
A Fast Parallel Community Discovery Model on
Complex Networks Through Approximate

Optimization
Shaojie Qiao , Nan Han, Yunjun Gao ,Member, IEEE, Rong-Hua Li, Jianbin Huang,

Jun Guo, Louis Alberto Gutierrez, and Xindong Wu , Fellow, IEEE

Abstract—Community discovery plays an essential role in the analysis of the structural features of complex networks. Since online

networks grow increasingly large and complex over time, the methods traditionally used for community discovery cannot efficiently

handle large-scale network data. This introduces the important problem of how to effectively and efficiently discover large communities

from complex networks. In this study, we propose a fast parallel community discovery model called picaso (a parallel community

discovery algorithm based on approximate optimization), which integrates two new techniques: (1) Mountain model, which works by

utilizing graph theory to approximate the selection of nodes needed for merging, and (2) Landslide algorithm, which is used to update

the modularity increment based on the approximated optimization. In addition, the GraphX distribution computing framework is

employed in order to achieve parallel community detection over complex networks. In the proposed model, clustering on modularity is

used to initialize the Mountain model as well as to compute the weight of each edge in the networks. The relationships among the

communities are then simplified by applying the Landslide algorithm, which allows us to obtain the community structures of the complex

networks. Extensive experiments were conducted on real and synthetic complex network datasets, and the results demonstrate that

the proposed algorithm can outperform the state of the art methods, in effectiveness and efficiency, when working to solve the problem

of community detection. Moreover, we demonstratively prove that overall time performance approximates to four times faster than

similar approaches. Effectively our results suggest a new paradigm for large-scale community discovery of complex networks.

Index Terms—Community discovery, complex networks, distributed computing, graph theory, approximate optimization

Ç

1 INTRODUCTION

COMPLEX networks have become ubiquitous in our daily
life. Such examples include online social networks,

publication citation networks, customer transaction net-
works, and so forth. Due to the complex relationships
between nodes, and the large cardinality of networks, these
networks are referred to as “complex network” [1]. Commu-
nity structure, which originates from complex networks,
refers to a group of nodes which are aggregated into tightly

connected groups, where there is a high density of within-
group edges and a lower density of between-group
edges [2]. It is important for the purposes of research to
understand the structural features, the evolution of commu-
nities, the propagation of information, points of interest rec-
ommendation, and other significant features. Community
discovery is one of the most important and fundamental
tasks in network analysis, and has applications in functional
prediction in Biology [3]. Early research in community dis-
covery for complex networks focuses primarily on small
networks with simple structures, this is due to the computa-
tional difficulties of storing and analyzing large-scale node
and edge information.

Our research is motivated by the following observations:
(1) as social networks become more and more embedded in
our everyday lives, this intuitively has led to a critical mass
of users, e.g., there are 13.5 billions users being active in
Facebook each month [4]. With the growth of social net-
works, traditional community detection algorithms do not
scale to the large number of users, the complex relationships
between them, or the rapid flux their relationships. (2)
These increasingly complex and undetected features of
large social networks represent missed opportunities for
analyzing, correlating, and ultimately predicting the behav-
ior of the users for the purposes of marketing, advertise-
ment and internet public opinion control. (3) The study of
the inner and intra structural features of communities in
large-scale complex networks has direct practical theoretical

� S. Qiao is with the School of Cybersecurity, Chengdu University of Infor-
mation Technology, Chengdu 610225, China. E-mail: sjqiao@cuit.edu.cn.

� N. Han is with the School of Management, Chengdu University of Informa-
tion Technology, Chengdu 610103, China. E-mail: hannan@cuit.edu.cn.

� Y. Gao is with the College of Computer Science and Technology, Zhejiang
University, Zhejiang 310027, China. E-mail: gaoyj@zju.edu.cn.

� R.-H. Li is with the School of Computer Science and Technology, Beijing
Institute of Technology, Beijing 100081, China. E-mail: rhli@szu.edu.cn.

� J. Huang is with the School of Software, Xidian University, Xi’an 710071,
China. E-mail: jbhuang@xidian.edu.cn.

� J. Guo is with the School of Information Science and Technology, Southwest
Jiaotong University, Chengdu 611756, China. E-mail: 624942464@qq.com.

� L.A. Gutierrez is with theDepartment of Computer Science, Rensselaer Poly-
technic Institute, Troy, NY 12180. E-mail: louisgutierrez2002@gmail.com.

� X. Wu is with the School of Computing and Informatics, University of
Louisiana at Lafayette, Lafayette, LA 70503. E-mail: xwu@louisiana.edu.

Manuscript received 3 Jan. 2017; revised 26 Dec. 2017; accepted 29 Jan. 2018.
Date of publication 7 Feb. 2018; date of current version 3 Aug. 2018.
(Corresponding authors: Yunjun Gao and Nan Han.)
Recommended for acceptance by Y. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2018.2803818

1638 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

1041-4347� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0003-3816-8450
https://orcid.org/0000-0003-3816-8450
https://orcid.org/0000-0003-3816-8450
https://orcid.org/0000-0003-3816-8450
https://orcid.org/0000-0003-3816-8450
https://orcid.org/0000-0003-2396-1704
https://orcid.org/0000-0003-2396-1704
https://orcid.org/0000-0003-2396-1704
https://orcid.org/0000-0003-2396-1704
https://orcid.org/0000-0003-2396-1704
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

applications. And such applications necessitate efficient and
accurate algorithms. (4) There exists some parallelized com-
munity detection algorithm proposed to process large-scale
data. The work done by Wickramaarachchi et al. [5] show
that they can achieve five fold performance improvement
when using 128 parallel processors, but in turn requires
even more resources to process larger networks.

In this study, we propose picaso, which is a new commu-
nity detection model that is much faster than the most state
of the art solutions, and improves the quality of community
detection. Picaso is capable of discovering communities
with more than 1 million nodes by less than 4 seconds, yet
using 16 computers having modest 4 GB RAM.

In order to address current suboptimal state of efficiency
and accuracy in existing community detection approaches
in large-scale complex networks, we make the following
contributions in this study:

(1) Utilize graph theory for approximate optimization
techniques in discovering large communities in com-
plex networks. This is accomplished by taking into
full consideration the structural features of commu-
nities, and in turn proposing new concepts and algo-
rithms including: 1) the boundary nodes, 2) the
chain group for storing the weight of nodes, 3) the
Mountain model for choosing nodes to combine, and
4) the Landslide algorithm used for updating the
weights of the chain-group structure and the nodes
in communities of the entire network.

(2) With the goal of efficiently processing large-scale
network data, we propose picaso that is a parallel
community discovery algorithm integrating the
Mountain model and Landslide algorithm. Picaso
can handle Big complex networks (i.e., having more
than 10 million), while traditional serial detection
algorithms do not work.

(3) In order to test, verify and measure the effectiveness
and efficiency of our proposed methods and algo-
rithms, we conducted a series of real and synthetic
experiments across large-scale complex networks.
The results were compared against traditional and
parallel algorithms

2 RELATED WORK

With the increased popularity and and prevalence of com-
plex networks, the area of research involving the study of
structural features within these networks continues to gar-
ner more attention. There have been several seminal com-
munity detection algorithms proposed since the inception
of this area of research, e.g., Newman et al. proposed the
GN algorithm [2], the Fast-Newman algorithm based on the
idea of modularity optimization [6] and the CNM algo-
rithm [7]. These methods have been widely used in detect-
ing communities in networks [8]. In order to improve the
efficiency of community detection, Qiu et al. [9] partitioned
the communities using the spectral bisection method, and
the Lapacian matrix. Ruan et al. [10] presented a simple
approach of combining content and link information in
graph structures. Wu et al. [11] proposed a query biased
node weighting scheme to reduce the irrelevant sub-graphs
and accelerate community detection.

More recently, Zhang et al. [12] recommended improve-
ments to the CNM algorithm by optimizing the update pro-
cess of modularity. Prat-P�erez et al. [13] proposed the
weighted community clustering model, which takes the tri-
angle, instead of the edge, as the minimal structural motif,
which indicates the presence of a strong relation in a graph.

Ferreira et al. [14] proposed a method which works to
transform a set of time series data into a comparable net-
work using various distance functions, in order to identify
groups of strongly connected nodes in complex networks.
Shan et al. [15] designed an overlapping community search
framework for group queries. Huang et al. [16] formulated
the community detection as a problem of finding the closest
truss community. Li et al. [17] proposed a framework to
determine communities in a multi-dimensional network
based on the probability distribution of each dimension
computed from the network. To make the process of com-
munity discovery more robust, Mahmood et al. [18] pro-
posed a sparse spectral clustering algorithm based on ‘1
norm constraints to find a community label for each node.
Whang et al. [19] proposed an efficient overlapping commu-
nity detection algorithm using a seed expansion approach.
The aforementioned methods for community detection
have proven integral in advancing both the areas of research
and application, however they do not address a fundamen-
tal problem, of which we attempt to address in this research,
of handling large-scale complex network data in an effective
and efficient manner. Dinh et al. [20] proposed an additive
approximation algorithm for modularity clustering with a
constant factor and they proved that a community structure
with modularity arbitrary close to maximum modularity
might bear no similarity to the optimal community struc-
ture of maximummodularity. Shiokawa et al. [21] proposed
a very fast modularity-based graph clustering algorithm by
incrementally pruning unnecessary vertices/edges and
optimizing the order of vertex selections. It requires only
156 seconds on a graph with 100 million nodes and 1 billion
edges. Differently, picaso is a parallel algorithm by applying
two strategies, i.e., the Mountain Model and the Landslide
strategy, which can help obtain high detection accuracy
with the guarantee of good runtime performance.

In order to address the difficulty of processing network
data, which for the purposes of this research can be consid-
ered Big Data, parallel algorithms were utilized. Prat-P�erez
et al. [22] proposed a high quality, scalable and parallel
community detection approach for large graphs. However,
due to certain limitations, it is not appropriate for detecting
overlapping communities. Wickramaarachchi et al. [5] pre-
sented an efficient approach to detecting communities in
large-scale graphs by improving the sequential Louvain
algorithm and parallelizing it on the MPI framework. Vara-
mesh et al. [23] proposed a clique percolation algorithm
(CMP) based on MapReduce to meet the necessary require-
ments of memory, CPU and I/O operations. The results
demonstrate that when the number of nodes are greater
than forty thousand, the execution time exceeds 1,000 sec-
onds. Recently, Staudt et al. [24] parallelized the Louvain
method to efficiently discover communities in massive net-
works. Moon et al. [25] utilized vertex-centric with MapRe-
duce and GraphChi to detect large graphs in social
networks. Lu et al. [26] proposed a conductance-based

QIAO ETAL.: A FAST PARALLEL COMMUNITY DISCOVERY MODELON COMPLEX NETWORKS THROUGH APPROXIMATE OPTIMIZATION 1639

community detection algorithm for weighted networks, and
designed an efficient data forwarding algorithm for delay
tolerant networks. Qiao et al. [27] proposed a parallel algo-
rithm for detecting communities in complex networks based
on modularity, and designed new community merge and
update strategies.

The parallel graph clustering models can be applied to
detect communities. Meyerhenke et al. [28] proposed an
effective parallel technique to partition large graphs of com-
plex networks. Takahashi et al. [29] proposed a novel algo-
rithm SCAN-XP that performs over Intel Xeon Phi to cluster
large-scale graphs. In [30], an interactive and scalable graph
clustering algorithm on multi-core CPUs was presented.
Shun et al. [31] parallelized many of graph clustering algo-
rithms in the shared-memory multicore setting. However,
the proposed graph clustering models cannot be straightly
applied to detect communities due to complex relationships
between nodes in complex networks.

In order to address these fundamental challenges, the
efficient discovery of communities, and in a timely and effi-
cient manner, in this research we propose a novel commu-
nity detection model based on approximate optimization,
which is parallelized on the GraphX framework [32] to
ensure fast computation. When compared with traditional
algorithms, and parallel algorithms, we demonstrate that
there is a clear and measurable increase in time perfor-
mance. Additionally, prediction accuracy for this method is
maintained at a very high level.

In the following sections, we will introduce the prelimi-
naries and discuss the Mountain model and Landslide algo-
rithm in Section 3. Section 4 addresses the implementation,
and its effects on time complexity, of the parallel algorithm
for the proposed model. In Section 5, we discuss the results
of extensive experiments conducted on real and synthetic
complex networks. Finally, we conclude our work and look
forward into future work in Section 6.

3 MOUNTAIN MODEL AND LANDSLIDE STRATEGY

With the given constraints, the weight of edges and the
index of communities, this paper proposes a new model
designed at accelerating the phase of computing the modu-
larity by implementing approximation optimization and
graph theory. In addition, in order to make the process of
updating weights more convenient, this research also intro-
duces the new algorithm “Landslide”.

3.1 Basic Concepts

A complex network is a graph with non-trivial topological
features, it has the following properties: self-organization,
self-similarity, small world, and scale-free.

Fig. 1 is an example of a network with twelve nodes and
twenty three edges derived from a complex network.

Definition 1 (Chain Group). A Chain Group is denoted by
CG=fs; t; rg, where s is the start node, t is the end node, and r
is the weight between s and t, or the relation type.

It is worth to note that we use the chain-group structure
to store the elementary network data in GraphX.

Definition 2 (Boundary Node). Given that BN=fP ðvi; vjÞj
vi 2 C; vj 2 C0; evivj 2 Eg represents the set of boundary
nodes, where vi, vj are distinct nodes from the communities C
and C0, and evivj is an edge in the edge set E.

In summary, the nodes between communities are bound-
ary nodes, such as the nodes {5, 7, 12} in Fig. 1. It follows
that the relationships among boundary nodes are more
complex than the nodes in a community. In order to accu-
rately distinguish the community where the boundary
nodes belong to, we apply the following strategy: the pro-
posed algorithm calculates the membership degree Bðu; cÞ=
kcu=ku of the boundary node u belonging to some commu-
nity c, where kcu represents the degree of node u in commu-
nity c, and ku is the degree of u in all communities. At last,
we assign the node to the corresponding community in
which it has the maximummembership degree.

Definition 3 (Modularity). Modularity is defined by the fol-
lowing equation [2]

Q ¼ 1

2m

X
i;j2V

eij � didj
2m

� �
dðci; cjÞ; (1)

where eij represents the connected relation between node i and
j in the adjacent matrix E of the network, m is the number of
edges, V is the node set, di and dj the degrees of node i and j,
and ci and cj the communities where i and j stays in, respec-
tively. If the community in which i belongs to is the same as
that of which node j belongs to, then dðci; cjÞ=1. Otherwise
dðci; cjÞ=0.
Given that relationships between communities is rela-

tively difficult to identify from the global perspective, it fol-
lows that Eq. (1) is also difficult to calculate. Newman
proposed a simplified equation as shown below [2]

Q ¼ 1

2m

Xn
i¼1

eii � d2i
2m

� �
; (2)

where m represents the number of edges, i is the sequence
number of a community, n is the number of communities,
eii is the number of edges in the ith community, and di
represents the sum of degrees of all nodes in the ith com-
munity. According to Ref. [2], when modularity reaches the
maximum value, communities can best be detected.

3.2 The Mountain Model

TheMountainmodel is integral in this research, and is based
on modularity, approximate optimization, and graph the-
ory. It sorts the chain groups by the weights of edges.
Owing to the feature of community structures, some chain
groups in a community may fall down while surrounding
community may rise like mountains. Resolutely, a suitable
number of chain groups at the top of mountains are chosen
to form new communities.

Fig. 1. Example of a simple network.

1640 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

Definition 4 (Modularity Increment). Assuming that com-
munities i and j merged, the following equation [6] can be
obtained to compute the modularity increment

DQ ¼ 1

m
eij � didj

2m

� �
: (3)

Where m represents the number of edges, eij denotes the
number of edges between community i and j, and di, dj rep-
resent the sum of degrees of all nodes in community i and j,
respectively.

Based on Eq. (3), we can determine that the modularity
increment grows with the modularity of Q.

Lemma 1. In any undirected graph, there must be two or more
nodes which have the same degree.

Proof. If it is known that G is a network with n nodes
(n �2), then there cannot exist any isolated nodes in G.

{ There are no isolated nodes,
; The degree d of every node meets 1 � d � n� 1,
; According to the Pigeonhole Principle, n nodes

select n-1 degree values, so there exists at least two nodes
which have the same degree. tu

Property 1. According to Lemma 1, there might exist several
similar graph structures in a complex network. Therefore, it is
true that there might exist some chain groups with similar mod-
ularity increments.

Property 2. According to the algorithm proposed in Ref. [6],
nodes are clustered with the maximum DQ at each iteration.
Nodes are sorted sequentially by the DQs within a community,
and the nodes with values larger than DQ are chosen to be com-
bined. This operation does not affect nodes which are outside of
the given community, because the relationships of nodes from
distinct communities are largely sparse.

Based on Properties 1 and 2, the picaso model calculates
nodes’ modularity increments and merge nodes with values
larger than the minimum DQ. According to the previously
referenced theories, it can be inferred that when chain
groups are sorted by DQ, the chain groups with values
larger than DQ, within a given community, do not need to
interact with other communities. Thus, the shape of the

network, after sorting, remains unchanged. This can be seen
in Fig. 2, where the intersection represents a chain group, C
represents a community, andH is the height of DQ.

In Fig. 2, the summit of each mountain represents the
maximummodularity increment DQw.r.t. each community.
Each mountain is formed by the modularity increments of
all nodes in this community. We can see five mountains
formed by the community C1; C2; . . . ; C5. As shown in
Fig. 2, when the maximum modularity increment is located,
denoted by DQmax, only C1 is involved. Thus, there is only a
need to merge the chain groups at the top of cluster C1. If
we take into account all of the CGs, and the intersection
DQ1 is chosen, it becomes the case where DQ � DQ1, C1 and
C2 all become involved, but C1 remains independent from
C2. It follows then that all the nodes can be clustered to
form two communities. Similarly, when the intersection
DQ2 is chosen, and C1; C2; C3; C4 become involved, then all
the nodes are clustered to form four communities.

Definition 5 (Mountain Model). The Mountain model is
comprised of a five-tuple equation denoted by M ¼ fCG;D;
H; �; Cg. It sorts the CGs by DQ, where CGs with similar DQ
values are placed on the same plane. I can be summarized as fol-
lows: CG: is the set of chain groups in a network, CG ¼
fCGuvju 2 V , v 2 V , euv 2 Eg, where V is the vertex set, E is
the edge set, CGuv=ðu; cu; v; cv;DQuvÞ, and cu is the commu-
nity index w.r.t. the node u; D: is the degree set, where
D=fd1; d2; . . . ; dig, and di represents the degree of node i.
When the CG needs to be updated, D is used to recalculate DQ;
H: is the set of heights w.r.t. the mountains, where H ¼
fh1; h2; . . . ; hkg; �: is a parameter which is used to determine
how many CGs should be chosen. If DQ � DQ� (0 <
� < hmax, DQ� ¼ CG�Þ, then, the corresponding CGs are
chosen; C: is community set, and C ¼ fC1; C2; . . . ; Ckg, Ck is
expressed by fv1; v2; . . . ; vqg, where vq is a vertex.
In the Mountain model, we apply the following approxi-

mate optimization technique: we find a reasonable parame-
ter �, then cluster CGs whereby DQ � DQ� work to form a
small community, and then merge the communities. The
above operations can reduce the costs of computation, and
help to improve the utilization of resources.

3.3 Landslide Update Strategy

Given that the modularity-based community detection
method needs to iteratively compute the modularity incre-
ment, and additional elements, including {CG, C, D}, need
to be updated as well, there exists the challenge of preform-
ing these operations in a timely manner. Current methods
require that the modularity increment be recalculated for
the whole network, which can prove costly in regard to
time, especially for complex networks with a large number
of nodes and edges. Thus, we propose the Landslide update
strategy.

In the phase of initializing the network, each node is con-
sidered to be a community, and DQ is obtained by Eq. (3).
After the operation which merges communities, DQ is calcu-
lated by the following equation:

DQ ¼ 1

2m2
2m �

X
u2X;v2Y

euv �
X
u2X

du �
X
v2Y

dv

 !
; (4)

Fig. 2. Example of the mountain model.

QIAO ETAL.: A FAST PARALLEL COMMUNITY DISCOVERY MODELON COMPLEX NETWORKS THROUGH APPROXIMATE OPTIMIZATION 1641

where m is the number of edges, euv denotes the edge
between node u and v,X and Y represent communities, and
di; dj represent the degrees of the node i and j, respectively.

Property 3.When the number of nodes and edges in the networks
remain unchanged, after the community merging operation, the
number of edges in the new community equals the sum of the
edges in and between the two merged communities. Moreover,
the number of edges between the new community and the other
communities equals the sum of edges between the merged com-
munities and other communities.

Example 1. Consider a simple network which includes
twelve nodes as shown in Fig. 3a, where the cluster 13
and 14 represent two distinct communities. After merging
communities 13 and 14, the results can be seen in Fig. 3b,
where Ei represents a set of edges in the community i,
Ei�j represents a set of edges between the communities i
and j, and ei�j represents the edge between node i and j.

Before merging:
E13 ¼ fe7�12g, E14 ¼ {e8�9, e9�10, e10�11, e9�11, e8�10},

E13�15 ¼ {e5�7, e5�12}, E13�14 ¼ {e7�8, e7�10, e9�12, e10�12,
e11�12}.

After merging:
E16 = E13 [E14 [E13�14 = {e7�12, e8�9, e9�10, e10�11,

e9�11, e8�10, e7�8, e7�10, e9�12, e10�12, e11�12};
E15�16 = E13�15 [E14�15 = {e5�7, e5�12}.

Corollary 1. When the number of nodes and edges in a complex
network remain unchanged, the DQ between the new commu-
nity and other communities can be determined based on the fol-
lowing: If a new community becomes connected with the
already merged communities, the DQ for this new community
is the sum of its DQ and that of the merged communities; Oth-
erwise, the DQ for this new community can be determined by
subtracting the product of the sum of the fraction of the node’s
degree in Z and Y from the number of edges. DQ can be
obtained by Eq. (5)

DQXY ¼
�
DQXY þ DQZY ; < Z; Y >2 E;Z � X
DQXY � 2aZ � aY ; < Z; Y > =2 E;Z � X

(5)

ai ¼ di
2m

(6)

aZ ¼
X
i2Z

ai (7)

aY ¼
X
j2Y

aj;Y 6� X; (8)

where X represents the new community, E is the set of edges,
Y the community that has not been merged, Z the community

that has been merged with X, hZ; Y i the edges between Z and
Y , and ai the fraction of node i’s degree to the number of edges.

For the purposes of this research, Corollary 1 is utilized
in order to help reduce the height of the mountains, as well
as update DQ in all CGs.

Example 2. In the network depicted in Fig. 1, after initiali-
zation, each node is viewed as a community, and DQ is
computed using Eq. (3). The result, before the communi-
ties have been merged, are shown in Table 1a, where the
first row and first column represent the indices of the
communities. Table 1b shows the results after communi-
ties two and three have been merged.

The calculation for the new DQ of community 13 is
denoted in bold in Table 1b. For example, DQ of edge
h6; 13i(row 6, column 13) is 0.058, which equals the sum of
0.029 at h2; 6i, and 0.029 at h3; 6i, as shown in Table 1a.

As the communities gradually self-aggregate, DQ in turn
continues to decrease, ultimately converging to zero. As a
result, smaller communities become clustered to form new
larger communities, and the relationships that characterize
these communities become more apparent and easier to
understand.

In the Landslide algorithm, the approximate optimiza-
tion technique is applied in order to approximate the
boundaries that divide the nodes into different communi-
ties. This process can help improve the accuracy of commu-
nity detection, and reduce unnecessary calculations for
modularity increments.

Based on the above research, this paper works to present
a new community discovery model for large-scale complex
networks called “picaso” (a parallel community discovery
algorithm based on approximate optimization), which is
implemented using Spark along with GraphX. The primary
steps include: 1) initializing the network based on Eq. (3), 2)
computing the DQ for each chain group, and establishing
the Mountain model, 3) approximating DQ, choosing multi-
ple chain groups to form new communities, and updating
DQ, and finally 4) parallelizing the picaso model to discover
community structures.

Fig. 3. Example of merging communities.

TABLE 1
Example of Updating the DQ

1642 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

4 PARALLEL COMMUNITY DETECTION MODEL

The picaso algorithm is designed on the GraphX frame-
work, but it cannot support the attributes of edges and
nodes. In order to handle this problem, we store the node
set V using a tuple ðv; cÞ in picaso, where v represents the
index of a node, and c is the index of the community which
v belongs to. In addition, picaso stores the edge set E using
a triplet ðs; t;DQÞ, where s is the start node, t is the end
node. The chain group can be obtained by computing the
Cartesian product of V and E.

The essential steps of the picaso algorithm include: (1)
parameter initialization, (2) building the Mountain model,
(3) merging the nodes and updating, and (4) community
generation. Note that, in the first step, the network data is
loaded and stored in memory, duplicated edges are elimi-
nated, and the indexes of nodes are reordered.

4.1 Parameter Initialization

In this phase, the task is to calculate the parameters for mod-
ularity incrementation w.r.t. chain groups, i.e., the number
of nodes n , the degree of each node denoted by d, the num-
ber of edgesm, and DQ.

Algorithm 1. Parameter Initialization

Input: The preprocessed network N .
Output: A graph G.
1. G = graphLoader(D);
2. m = getEdges(G);
3. n = getNodes(G);
4. disseminatem to each machine;
5. for each node i 2 V do
6. di = getDegree(G, i);
7. cId = i;
8. T = V � E;
9. for each t 2 T do
10. DQij ¼ 2 � ðeij2m � didj

4m2Þ;
11. output G;

As shown in Algorithm 1, the first step is to load the net-
work data into memory (line 1), then calculate the number
of edges m (line 2) and the number of nodes n (line 3) and
disseminate m to each machine (line 4). The second step is
to compute the degree of each node (lines 5-6), and specifies
the node’s community index to be its node index (line 7).
The third step is to form chain groups by using the Carte-
sian product of V and E (line 8), which determines DQ w.r.t
the chain group (lines 9-10). Lastly, the new graph G is out-
putted (line 11).

4.2 Constructing the Mountain Model

After initializing the chain group, the Mountain model is
constructed, which works to sort the chain groups by their
DQ. According to Definition 5 and Corollary 1, it is known
that the peak of each mountain is mutually-exclusive, thus
suitable chain groups are chosen for merging at the top of
the mountains so as to form smaller communities with an
acceptable � parameter. The new index is allocated to the
new community. The algorithm is given below:

The basic idea of Algorithm 2 is given as follows:

(1) Obtain the maximum height of mountains based on
Definition 4 (line 1), compute the parameter �, and
determine the validity of � (line 2).

(2) Obtain the chain group set CG by the taking Carte-
sian product of V and E (line 3).

(3) Choose the chain groups in CG where DQ � DQ�,
and form a new set S (lines 4-6).

(4) Compute the connect component of S, where nodes
in the same connect component belong to the same
community (line 9). Allocate a new index for the
newly-formed community (line 10), remove the
nodes that have been allocated (line 11), and output
the preliminarily dividing community set C (line 12).

Algorithm 2.Mountain Model Construction

Input: The graph G = (V;E).
Output: A preliminarily dividing community set

C ¼ ðC1; C2; C3; . . .Þ.
1. H = getHeight(G);
2. � = 2 � jEj=jCj;
3. CG = V � E;
4. for each t 2 CG do
5. if getAttr(t)� DQ� then
6. VT = insert(t);
7. for VT 6¼ ; do
8. n = nþ 1;
9. S0 = connectComponent(S);
10. C = insert(n; S0);
11. S = remove(S; S0);
12. output C;

4.3 Community Merging and Update

Algorithm 3. Community Merging and Update

Input: The community set C that needs to be merged.
Output: The graph G after being updated.
1. for each edge e 2 E do
2. if s 2 C or e 2 C then
3. {X;Y } = getCommunityðs; t; CÞ;
4. for each node i 2 X and j 2 Y do
5. if eij 2 E then
6. DQXY = DQXY þ DQij;
7. else
8. DQXY = DQXY � didj

2m2;
9. for each c � C do
10. for each k 2 c do
11. dc = dc þ dk;
12. for each v 2 V do
13. if v 2 C then
14. cId = getNewID(v; C);
15. output G;

An important next step is to merge and update the chain
groups after finding the preliminary communities found by
Algorithm 2. This process includes the community index of
nodes, the degree of nodes in the communities, and DQ.
The main steps of community merging and update are
given in Algorithm 3, which includes:

(1) Find the communities X and Y that contain the
start node s, and the end node t (lines 1-3). For the

QIAO ETAL.: A FAST PARALLEL COMMUNITY DISCOVERY MODELON COMPLEX NETWORKS THROUGH APPROXIMATE OPTIMIZATION 1643

communities i inX and j in Y , if there are edges con-
necting i and j, the value of DQ for X and Y should
be added by the DQ between i and j (line 6); other-
wise, it should be minus two fold the product of
di=2m and dj=2m (line 8).

(2) Calculate nodes’ degrees in new communities. For
each new community in C, the degree equals the
sum of nodes’ degrees belonging to it (lines 9-11).

(3) Lastly, the community in which the nodes belong to
are determined. This is done by visiting each vertex
v in V , if v belongs to a new community, obtain the
index of this community, and specify the attribute of
this vertex to be this index (line 14). Then, output the
new graph G (line 15).

4.4 Community Generation

After clustering the distinct communities, the redundant
data is eliminated. This is because only the node and the
sequence number of the community in which the node
belongs to is needed. The data structures stored in GraphX
include V =ðvId; cIdÞ, E=ðs; t;DQÞ,D=ðd1; d2; . . . ; dnÞ.

Algorithm 4. Community Generation

Input: The updated graph G.
Output: The community C.
1. for each v 2 G do
2. if cID 2 C then
3. t = getCommunity(cId);
4. c = insert(t; vId);
5. C = insert(cId; c);
6. else
7. C = insert(cId; vId);
8. output C;

The main steps of Algorithm 4 include:

(1) Visit all the nodes (line 1), if one node’s community
cId have been stored, add this node to the commu-
nity with cId (lines 2-5); otherwise, create a new com-
munity to store it (lines 6-7).

(2) Output the community set C which is stored in the
HDFS file system (line 8).

4.5 Parallel Community Discovery Based on
GraphX

The GraphX-based parallel community discovery model
has the following properties [32]: (1) a data model consisting
of a series of chain-groups to graph data; (2) a coarse-
grained data-parallel programming model composed of
deterministic operators including map, group-by, and join;
(3) a scheduler that divides each job into a directed acyclic
graph of community detection tasks, where each task runs
on a partition of data.

In the picaso model, the parallel community discovery in
a distributed dataflow framework is viewed as a sequence
of join operations and group-by operations.

In the join phase, vertex properties represented by V =
ðvId; cIdÞ, and edge properties E = ðs; t;DQÞ are joined to
form the chain-group triplets consisting of each edge and its
corresponding source and destination vertex properties.

In the group-by phase, the triplets are grouped by source
or destination vertex to construct the neighborhood of each

vertex, andmerge andupdate the chain-groups byAlgorithm
3 after finding the preliminary communities byAlgorithm 2.

By iteratively applying the above phases to calculate the
modularity increment DQ of each node and update the
node properties until converging to the minimum modular-
ity increment (the optimal value is zero).

4.6 Time Complexity Analysis

For a complex network denoted by CN = ðV;EÞ, with n
nodes and m edges, the picaso algorithm visits all edges
once in the phase of preprocessing. It needs to visit all edges
and nodes again in order to obtain the attribute of edges
and nodes in the parameter initialization phase. Thus, the
time complexity of these two phases is equal to Oðnþ 2mÞ.
For community generation, it needs to visit all nodes again,
which makes the time complexity equal to OðnÞ.

The main phases of picaso include: (1) Mountain model
construction and (2) Community merging and updating.

(1) For the first phase, all edges are visited while the
height of each mountain is obtained, the algorithm
searches for the chain group that has a DQ bigger
than DQ�. Next, the algorithm traverses nodes and
edges in the subgraph one time in order to find the
connected components. Assuming that there are x
nodes and y edges that need to be merged in each
round of operation, the time complexity of this step
equals Oð2mþ xðxþ yÞÞ.

(2) For the second phase, picaso finds edges and nodes
that need to be updated, and modifies their attributes
after obtaining the new attributes. The time complex-
ity for this process is Oð2mþ nÞ. In the phase of com-
puting the new attributes, it is assumed that the
number of communities that need be merged equals
q. In general, the number of edges in these communi-
ties is equal to r times of the number of nodes, so the
time complexity of this phase isOðr � x3=q2Þ.

Based on the above discussion, the time complexity of
these two phases is equal to Oð4mþ nÞ. I can be concluded
then that in the worst case, where there is only one small
community having x nodes can be detected each time, the
time complexity is equal to Oðð4mþ nÞ � n=xÞ. In the best
case, there are y communities which contain x nodes on
average that can be detected each time, the time complexity
is equal to Oðð4mþ nÞ � n=ðxyÞÞ.

5 EXPERIMENTS

5.1 Experimental Setup

In order to evaluate the effectiveness and efficiency of the
proposed algorithm, a variety of datasets as shown in
Table 2 were used during the experimentation: (1) five syn-
thetic large-scale complex network datasets, randomly gen-
erated by the LFR benchmark algorithm [33]; (2) four real
complex network datasets, obtained from the Stanford Net-
work Analysis Project(SNAP) [34]; (3) five real small net-
work datasets, which were used primarily for visualization
of the discovered communities.

The LFR benchmark network generation algorithm was
proposed by Lancichinetti, which can generate networks
with real network features according to the input para-
meters. These types of datasets are especially useful in

1644 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

estimating the accuracy of community detection. The com-
monly used parameters in this algorithm include the follow-
ing: the number of nodes n, the average degree of nodes k,
the number of nodes in the smallest community Cmin, the
number of nodes in the largest community Cmax, and
the mixing parameter m (which can range from 0 to 1). The
greater the m, the less obvious the community structure.

The picaso algorithm was developed by the Scala lan-
guage on the Spark platform. The Spark cluster contains 16
computers (one master and 15 servant nodes) with Intel
E5620 processor having 4G memory. Each algorithm runs
three times, and the average value is used for evaluation.
The algorithms which were compared include non-Over-
lapping Community Detection Idea (OCDI) proposed by
Zhang et al. [12], Detecting Big Community based on Spark
(DBCS) proposed by Qiao et al. [27], Parallel Louvain
Method with Refinement (PLMR) designed by Staudt
et al. [24], picaso-a which is a serial implementation of pic-
aso, a parallel algorithm for community detection. OCDI is
an efficient and accurate community discovery algorithm,
but has difficulties scaling to large-scale network data. This
algorithm, for the purposes of these experiments, is the
main algorithm which is compared to picaso-a. DBCS,
which was also developed on Spark, is mainly compared
with picaso. PLRM is a parallel Louvain method by an addi-
tional move phase after each prolongation.

The differences between DBCS and picaso lie in the fol-
lowing aspects: (1) the picaso model uses the Mountain
model which is proposed by us based on modularity,
approximate optimization, and graph theory. The Mountain
model can partition the social graph into an initial commu-
nity set, and use the Landslide algorithm to merge and
update the community set, which can decrease the cost of
community aggregation; (2) picaso chooses a large amount
of nodes at the top of mountains to merge periodically,
which helps reduce the cost of data transmission and makes
use of Spark clusters to reduce the calculation delay and

waiting time; (3) picaso uses the proposed chain-group
structure to store the elementary network data in GraphX.

Definition 6 (Detection Accuracy). Detection accuracy [27]
is defined as the fraction of correctly detected nodes in commu-
nities to the number of all nodes, it is shown

DA ¼ 1

n

Xk
i¼1

maxfCi \ CjjCj 2 C0
igðj ¼ 1; 2; . . . ; lÞ; (9)

where Ci represents the true community set, C0
i is the discov-

ered community, maxfCi \ CjjCj 2 C0
ig is the maximum

public subset between Ci and C0
i, n is the number of nodes, k is

the number of real communities, and l is the number of discov-
ered communities.

Clustering coefficient [35] is an important evaluation cri-
teria in community discovery. It is often used to analyze the
community structure and the search performance.

Definition 7 (Clustering Coefficient, CC). Clustering Coef-
ficient is defined as follows:

Ck ¼
2
P

a;c2N jeacj
dkðdk � 1Þ : (10)

Where Ck, given that Ck 2 [0,1], is the clustering coeffi-
cient of node k, N represents the boundary node set, a and c
represent two boundary nodes, eac represents the edge
between a and c, and dk is the degree of k. The CC of the
entire network is equivalent to the average value of all
nodes’ CC

C ¼ 1

n

Xn
i¼1

Ci: (11)

By Ref. [35], the fact does hold: if the CC of most commu-
nities is three fold of the entire network of CC, the detected
community structure is significative and valuable.

TABLE 2
Description of Datasets

(a) Synthetic complex network datasets

Name No. of nodes(V) No. of edges(E) m Average degree(2E=V)

v-1w 10,000 76,864 0.3 15.3728
v-10w 100,000 1,522,597 0.3 30.4519
v-50w 500,000 7,477,625 0.3 29.9105
v-100w 1,000,000 14,907,384 0.3 29.8148
v-1000w 10,000,000 154,831,275 0.3 30.9663

(b) Real complex network datasets
Name No. of nodes No. of edges Average degree Description

com-DBLP 317,080 1,049,866 6.6221 DBLP collaboration network
com-Amazon 334,863 925,872 5.5299 Amazon product network
com-Youtube 1,134,890 2,987,624 5.2651 Youtube social network
com-LiveJournal 3,997,962 34,681,189 17.3494 LiveJournal social network

(c) Small real network datasets
Name No. of nodes No. of edges Average degree Description

strike 24 38 3.1667 employees relationship network
polbooks 105 441 8.4 American politics book network
football 115 616 10.713 college football team network of USA
jazz 198 2,742 27.697 jazz musician collaborator network
facebook 5,000 8,194 3.2776 5,000 subnetworks derived from facebook

QIAO ETAL.: A FAST PARALLEL COMMUNITY DISCOVERY MODELON COMPLEX NETWORKS THROUGH APPROXIMATE OPTIMIZATION 1645

In this study,DA and CC are mainly used to evaluate the
accuracy of community discovery.

5.2 Parameter Tuning

In an effort to make the comparison between the various
algorithms used in the experiments, the parameter � used
in the Mountain model was adjusted accordingly. Picaso
chooses chain groups at the top of Mountain model to
approximately merge into communities by using the param-
eter �, thus the selection of � becomes integral to perfor-
mance. In this set of experiments, it have been observed
varying the value of � for picaso can have a distinct effects
on the DA and execution time. The results of this experi-
mentation are shown in Fig. 4.

According to Fig. 4 � increases, the DA of picaso gradu-
ally decreases under different datasets. In contrast, execu-
tion time appears to be reducing in the process. This is
because picaso chooses chain groups to merge which have
boundary nodes that minimize discrimination among com-
munities. In particular, when the height of the Mountain
model becomes low, picaso may choose too many chain

groups to merge, which could increase the chance that an
incorrect community partition. When � grows, there are
more chain groups to be selected, thus the computational
resources can be fully utilized, and the number of merging
operations can be greatly reduced. By Fig. 4, it can be con-
cluded that, in regard to the Facebook dataset, when
3< � < 7, the DA is relatively high, and runtime drops sig-
nificantly. For the v-10w dataset, when 10< � < 30, the DA
is also high. For the com-DBLP dataset, when 10< � < 40,
results demonstrate that picaso works well.

It is of interest to note that the average degree of nodes
(2jEj
jCj) appears within a reasonable range of the � values for

multiple datasets. To keep the generality of the algorithms,
we specify � to 2jEj

jCj , where jEj is the number of edges, and
jCj is the number of communities.

5.3 Community Detection Accuracy Comparison

In this study, we use detection accuracy to evaluate the
quality of community discovery. Table 3, Figs. 5 and 6 show
theDA of each algorithm for various datasets.

According to Table 3, Figs. 5 and 6, this research can con-
clude the following:

1) For small network datasets, OCDI, DBCS and picaso
can obtain high DA values, usually more than 80 percent.
The average DA of picaso is only about 5.86 percent lower
than that of OCDI, only about 6.76 percent lower than that
of DBCS, and 2.02 percent higher than that of PLMR. This is
because picaso chooses chain groups at the top of the

Fig. 4. Accuracy and efficiency of picaso by distinct � values.

TABLE 3
Detection Accuracy on Real Small Network Datasets

strike polbooks footall jazz facebook

OCDI 100% 84.02% 89.28% 87.36% 84.43%
picaso-a 100% 79.24% 86.16% 72.37% 81.92%
DBCS 100% 85.31% 90.59% 90.59% 83.09%
PLMR 100% 80.24% 79.27% 67.68% 78.51%
picaso 100% 82.36% 81.42% 70.73% 81.27%

Fig. 5. Detection accuracy on synthetic network datasets.

Fig. 6. Detection accuracy on large-scale real network datasets.

1646 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

Mountain model to form new communities via approximate
optimization. When the communities gradually merge, the
height of the mountains are reduced. Picaso has a lower rec-
ognition rate for the boundary nodes at the bottom of moun-
tains, which causes DA to decrease. However, the gap
between picaso, OCDI, DBCS and PLMR is very small,
because the portion of boundary nodes are small in number.
Thus the majority of nodes can still be correctly partitioned.
For the jazz dataset, the DA of picaso is about 20 percent
less than that of OCDI and DBCS, since the average node
degree of jazz is 27.697. This is too large to detect most of
nodes correctly, so � = 2jEj

jV j is not an optimal choice for this
dataset, an appropriate value must be specified, which will
be further discussed in the following section.

2) In Table 3, it can be seen that the serial algorithmpicaso-
a has a lowerDA than picaso. This is because picaso-a selects
a large number of nodes to merge, and works similar to that
of the OCDI algorithm, making it unnecessary to obtain the
connected branch subgraphs like picaso. So, picaso-a differs
from picaso in that how the modularity increment is calcu-
lated, and as a result itsDA is lower that of picaso.

3) For the synthetic data sets as shown in Fig. 5, theDA of
picaso is nearly the same as DBCS, only about 3.165 percent
less than that of DBCS, and 3.343 percent higher than that of
PLMR on average. This is because the average node degree
of each synthetic dataset is relatively large, and the commu-
nity structure of the network is intuitive. In other words, the
m value is relatively small. Ownership of the boundary
nodes for the given communities is easy to see, and this is
because picaso accurately predicts the communities for
which the nodes at the top of mountains belong to. This
makes it suitable to handle large-scale network data. In
addition, the new update strategy applied in picaso, when
compared with other algorithms, can obtain more accurate
DQ values, this all but guarantees that picaso produces a
consistently highDA value.

4) In Fig. 6 the DAs of picaso, DBCS and PLMR both
exceed 70 percent, with a small advantage to DBCS over pic-
aso, and picaso outperforms PLMR with a small gap. This is
because the connections between communities is very com-
plex in real network datasets, and the connectivity between
boundary nodes tends to be sparse. This makes it difficult
to identify boundary nodes for picaso and PLMR, and since
the average node degree of real communities tends to be
small, it follows that the gap between the modularity incre-
ment and the height of the Mountain model are also small.
Thus the number of boundary nodes increases, and picaso
has a slight disadvantage when compared to DBCS.

When using the LFR benchmark program to generate the
network data, the parameter m determines whether or not

the network has any clear community structures. The greater
the value for m, the more unclear the community structure
may be. Therefore, for the purposes of these experiments,
various m values are generated for various networks that go
beyond the v-1w dataset, so as to observe the impact of m on
DA and runtime efficiency when using the given algorithms.

Fig. 7a shows the DA for different algorithms on the v-
1w dataset as m is increased, while the number of nodes and
the average node degree remain unchanged. As we can con-
clude the following from Fig. 7a: (1) the DA of each algo-
rithm drops as m increases. This is because when m grows,
the community structure become less obvious, and in turn it
becomes difficult to partition nodes into the correct commu-
nities. it can be concluded that m has a strong effect on DA.
(2) When m is small, DA of both picaso and DBCS are lower
than that of OCDI. However, when m equals 0.45 or higher,
the DA of picaso and DBCS are higher than that of OCDI.
An improvement of 4.877 and 6.343 percent on average,
respectively. This implies that picaso performs better when
handling network data with ambiguous community struc-
ture, when compared to the traditional algorithms. The rea-
son for this is that picaso uses the Mountain model to
cluster representative nodes at the peak into communities.
In addition, the proposed Landslide algorithm can help
improve accuracy for calculating the modularity increment.
(3) the DA of picaso has a slightly lower value than that of
DBCS and has a slightly higher value than that of PLMR.
The reason for this is that the community structure increases
in ambiguity as m increases, which renders the ownership of
boundary nodes relatively hard to distinguish.

By Fig. 7b, we can see that the execution time of each
algorithm grows with m. This can be explained by the rea-
son that as m increases which means there are several over-
lapping nodes and the community structures are hard to
distinguish, all algorithms need to spend more time on par-
titioning these overlapping nodes. Additionally, we find
that the parallel picaso, PLMR and DBCS models outper-
form the serial OCDI and picaso-a models with a big gap,
which shows the advantage of parallel computing models
on multiple processors.

5.4 Community Recognition Quality Analysis

Fig. 8 shows the whole network clustering coefficient and
the average clustering coefficient for picaso in real large-
scale networks. CC is used to represent the clustering coeffi-
cient. For each network, five communities are randomly
selected, and CC is calculated for each one. It is worthwhile
to note that the formula of community selection is i = k*
(n%512), where i is the community sequence number, k = 1,
2, . . . , n, and n is the number of communities.

Fig. 8 shows the following: (1) the results of the commu-
nity CC and whole network CC are disparate, and all com-
munity CCs are greater than the whole network CC; (2)
most of the community CCs are three fold higher than the
whole network CC, only c3 in Fig. 8a, c2 and c5 in Fig. 8d are
less than three fold the whole network CC. This strongly
suggests that picaso has high-quality community recogni-
tion rate. The reason for this is that picaso merges nodes at
the top of Mountains one at a time, and distributes most
nodes into the correct communities. For picaso, it may be
difficult to handle boundary-nodes which are not involved

Fig. 7. Impact analysis of the m parameter on v-1w dataset.

QIAO ETAL.: A FAST PARALLEL COMMUNITY DISCOVERY MODELON COMPLEX NETWORKS THROUGH APPROXIMATE OPTIMIZATION 1647

in the merge operation. However, the Landslide algorithm
provides an effective update strategy for calculating the
modularity increment.

Fig. 9 visualizes the community structure of two small
real networks by picaso. We can see that community struc-
ture of all these networks can be clearly identified, which
strongly suggests the effectiveness of picaso.

5.5 Efficiency Analysis

Picaso is a community discovery algorithm which runs in
parallel on the Spark platform, and is designed to handle

large-scale complex networks. Given the size and scale of
the networks, the runtime of the algorithm becomes almost
as important as the accuracy. The following experiments
were conducted on datasets of varying size and complexity.
The results are shown in Table 4, Figs. 10 and 11.

Table 4 shows the case when the cardinality of the data-
set is small, the results show that OCDI and picaso-a are
faster than picaso and DBCS. This is because, in terms of
DBCS and picaso, the phases of task allocation and data
transmission among Spark clusters occupies most of time
for processing small-scale data. According to Table 4, the
results show that the runtime for picaso is nearly equivalent
to DBCS when the size of datasets are relatively small, this
is because predominantly these two algorithms are mainly
used in data transmission and file reading and writing. Pic-
aso’s performance advantage becomes clear when the cardi-
nality of data grows gradually.

When data from Facebook was used, picaso demon-
strates a 3.14 and 4.03 times advantage in speed over DBCS

Fig. 9. Community structure of real network datasets.

Fig. 8. Clustering coefficient of real large-scale complex networks.

TABLE 4
Execution Time of Real Small Network Datasets (sec.)

strike polbooks footall jazz facebook

OCDI 0.022 0.048 0.09 0.26 113.617
picaso-a 0.006 0.014 0.084 0.191 21.332
DBCS 1.847 2.674 3.87 6.249 61.823
PLMR 3.183 5.725 6.239 9.461 79.491
picaso 1.708 2.621 3.005 4.286 19.712

Fig. 10. Execution time on large-scale synthetic networks.

Fig. 11. Execution time on large-scale real networks.

1648 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

and PLMR, respectively. This is because picaso chooses
nodes with large modularity increments at the top of moun-
tains and merges them periodically, which greatly reduces
the calculation of community aggregation and data trans-
mission. This method can make use of Spark clusters to pre-
vent computation delay and waiting. In addition, picaso
also uses the Landslide algorithm to calculate the modular-
ity increment of communities, which also contributes to the
reduction in computation time.

Findings in this reasearch show that the execution time of
picaso-a demonstrates an improvement of about 51.58 per-
cent when compared to OCDI. Picaso-a also preforms better
than OCDI on smaller datasets, primarily because picaso-a
aggregates a large number of nodes in each iteration so the
total number of iterative calculations are reduced. This step
helps to save both time and space.

As the number of nodes grows to more than 10 million,
OCDI and picaso-a both do not work, thus the results obtain
are only valid for runtime performance, which are show in
Figs. 10 and 11. We can see that the execution time of picaso
is 1.8 and 2.3 times faster than that of DBCS for the synthetic
and real networks, respectively, and picaso exceeds PLMR
on runtime performance for 3.49 and 4.05 times on the syn-
thetic and real datasets, respectively. In particular, the execu-
tion time of picaso is about 14.1 and 12.6 times faster than the
serial picaso-a algorithm on the synthetic and real datasets,
respectively. The reason for this advantage is that picaso
chooses a large amount of nodes at the top of mountains to
merge periodically, which greatly decreases the cost of com-
munity aggregation and data transmission, and can again
make use of Spark clusters to reduce the calculation delay
and waiting time by comparing with DBCS and PLMR algo-
rithms. In addition, picaso employs the GraphX distribution
graph computing framework to discover communities in a
parallel manner which greatly improves the runtime perfor-
mancewhen compared to picaso-a on a single processor.

We can see that the execution time of picaso shows an
improvement of 59.8 and 54.0 percent on the v-1000w data-
set when compared to the PLMR and DBCS algorithms,
respectively. This proves that picaso can achieve good effi-
ciency on handling very large complex networks with bil-
lions of edges.

Notice that, as shown in Fig. 11, the execution time of the
compared algorithm PLMR is higher than 50 minutes,
which is much slower when compared with the results of
PLMR [24]. This is because PLMR does not work well when
there are several overlapping nodes between communities.
In our experiments, we specify m to 0.7 which is a large
value implying there are several overlapping nodes and the
community structures are hard to distinguish.

In order to evaluate performance of parallel computing
on multi-core processors, we observe the speedup factor of
the DBCS, PLMR and picaso algorithms on the largest syn-
thetic dataset (i.e., v-100w) and the largest real dataset (i.e.,
com-LiveJournal). The results are shown as follows.

According to Fig. 12, we can see that the speedup factor
of picaso wins DBCS and PLMR under different number of
processors. This is because picaso utilizes the chain-group
structure to store the network data in GraphX on the Spark
platform, which can accelerate the distribution computing
and reduce the calculation delay.

5.6 Efficiency Estimation of Two Strategies
in Picaso

As for picaso, the Mountain model is a heuristic strategy,
whichmerges the nodes with DQ larger thanDQ� to obtain an
initial community result very quickly, and the Landslide
update strategy is an approximate scheme to efficient compute
DQ. In this section,we report howmuch each strategy can con-
tribute to the runtime performance of picaso by applied them
separately, and the results are given in Fig. 13, where picaso-
without Mountain Model and pocaso-without Landslide
represent the picaso algorithm which only applies the Land-
slide update strategy and theMountainModel, separately.

From Fig. 13, we can see that the Landslide update strat-
egy contribute much to the efficiency on each real dataset.
This is because the Landslide update strategy approximates
the boundaries that divide the nodes into different commu-
nities, which can greatly reduce unnecessary computations
for modularity increments.

6 CONCLUSION

In this research, we have presented a parallel community
discovery algorithm for large-scale complex networks,
named picaso. Picaso functions by integrating multiple
innovations, which include the Mountain model, a new
update strategy called the Landslide algorithm, which is
based on approximate optimization techniques and graph
theory. Picaso functions by finding the nodes that meet the
condition of aggregation based on the Mountain model,
then forms new communities and calculates the modularity
increment between the newly formed communities and
other communities. The Experiments to test the validity of
the proposed methods were conducted on synthetic and

Fig. 12. Speedup comparison of parallel models on large-scale datasets.

Fig. 13. Execution time comparison of different picaso algorithms.

QIAO ETAL.: A FAST PARALLEL COMMUNITY DISCOVERY MODELON COMPLEX NETWORKS THROUGH APPROXIMATE OPTIMIZATION 1649

real large-scale complex network datasets. The results dem-
onstrate that picaso is more effective and efficient on detect-
ing big communities in complex networks.

Future work will include addressing the case when the
size of network nodes and edges become extremely large,
e.g., more than 1 billion nodes. The proposed algorithm can-
not guarantee real time performance in such a case, and will
necessitate further innovations to produce efficiency com-
puting of the modularity increment. Another challenge that
will be addressed in future work is overlapping community
recognition. This will require new methods for which will
likely be implemented on the Spark platform.

In conclusion, the methods proposed in this research
work to contribute to a larger effort targeted at advancing
the study of complex community evolution. Understanding
the evolution of network structures, analysing, processing
and ultimately predicting the behavior of participants in
large-scale social networks has and will continue to have a
profound impact on society and technology.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural
Science Foundation of China under Grant No. 61772091,
61100045, 61363037; the Planning Foundation for Humani-
ties and Social Sciences of Ministry of Education of China
under Grant No. 15YJAZH058; the Scientific Research Foun-
dation for Advanced Talents of Chengdu University of
Information Technology under Grant Nos. KYTZ201715,
KYTZ201750; the Scientific Research Foundation for Young
Academic Leaders of Chengdu University of Information
Technology under Grant No. J201701 the Innovative Research
Team Construction Plan in Universities of Sichuan Province
under Grant No. 18TD0027.

REFERENCES

[1] A. Barabasi, R. Albert, H. Jeong, and G. Bianconi, “Power-law dis-
tribution of the world wide web,” Sci., vol. 287, no. 5461, 2000,
Art. no. 2115.

[2] M. E. J. Newman and M. Girvan, “Finding and evaluating com-
munity structure in networks,” Phys. Rev. E, vol. 69, no. 2, 2004,
Art. no. 026113.

[3] J. Lee, S. P. Gross, and J. Lee, “Improved network community
structure improves function prediction,” Sci. Rep., vol. 3, no. 2,
2013, Art. no. 2197.

[4] Wearesocial, “Gigital in 2016,” 2016. [Online]. Available: http://
www.wearesocial.com

[5] C. Wickramaarachchi, M. Frincuy, P. Small, and V. K. Prasannay,
“Fast parallel algorithm for unfolding of communities in large
graphs,” in Proc. IEEE High Perform. Extreme Comput. Conf., 2014,
pp. 1–6.

[6] M. E. J. Newman, “Fast algorithm for detecting community struc-
ture in networks,” Phys. Rev. E, vol. 69, 2004, Art. no. 066133.

[7] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Phys. Rev. E, vol. 70, no. 2, 2004,
Art. no. 066111.

[8] M. E. J. Newman, Networks: An Introduction. Oxford, U.K.: Oxford
Univ. Press, 2010.

[9] J. Qiu, J. Peng, and Y. Zhai, “Network community detection based
on spectral clustering,” in Proc. Int. Conf. Mach. Learn. Cybern.,
2014, pp. 648–652.

[10] Y. Ruan, D. Fuhry, and S. Parthasarathy, “Efficient community
detection in large networks using content and links,” in Proc. 22nd
Int. Conf. World Wide Web, 2013, pp. 1089–1098.

[11] Y. Wu, R. Jin, J. Li, and X. Zhang, “Robust local community detec-
tion: On free rider effect and its elimination,” Proc. VLDB Endow-
ment, vol. 8, no. 7, pp. 798–809, 2015.

[12] X. Zhang, et al., “Overlapping community identification approach
in online social networks,” Physica A, vol. 421, pp. 233–248, 2015.

[13] A. Prat-P�erez, D.Dominguez-Sal, J.-M. Brunat, and J.-L. Larriba-Pey,
“Put three and three together: Triangle-driven community detec-
tion,” ACM Trans. Knowl. Discovery Data, vol. 10, no. 3, 2016,
Art. no. 22.

[14] L. N. Ferreira and L. Zhao, “Time series clustering via community
detection in networks,” Inf. Sci., vol. 326, pp. 227–242, 2016.

[15] J. Shan, D. Shen, T. Nie, Y. Kou, and G. Yu, “Searching overlap-
ping communities for group query,” World Wide Web, vol. 19,
no. 6, pp. 1179–1202, 2016.

[16] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng,
“Approximate closest community search in networks,” Proc.
VLDB Endowment, vol. 9, no. 4, pp. 276–287, 2015.

[17] X. Li, M. K. Ng, and Y. Ye, “MultiComm: Finding community
structure in multi-dimensional networks,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 4, pp. 929–941, Apr. 2014.

[18] A. Mahmood andM. Small, “Subspace based network community
detection using sparse linear coding,” IEEE Trans. Knowl. Data
Eng., vol. 28, no. 3, pp. 801–812, Mar. 2016.

[19] J. Whang, D. Gleich, and I. Dhillon, “Overlapping community
detection using neighborhood-inflated seed expansion,” IEEE
Trans. Knowl. Data Eng., vol. 28, no. 5, pp. 1272–1284, May 2016.

[20] T. N. Dinh, X. Li, and M. T. Thai, “Network clustering
via maximizing modularity: Approximation algorithms and
theoretical limits,” in Proc. IEEE Int. Conf. Data Mining, 2015,
pp. 101–110.

[21] H. Shiokawa, Y. Fujiwara, and M. Onizuka, “Fast algorithm for
modularity-based graph clustering,” in Proc. 27th AAAI Conf.
Artif. Intell., 2013, pp. 1170–1176.

[22] A. Prat-P�erez, D. Dominguez-Sal, and J.-L. Larriba-Pey, “High
quality, scalable and parallel community detection for large
real graphs,” in Proc. 23rd Int. Conf. World Wide Web, 2014,
pp. 225–236.

[23] A. Varamesh, M. K. Akbari, M. Fereiduni, S. Sharifian, and
A. Bagheri, “Distributed clique percolation based community
detection on social networks using MapReduce,” in Proc. 5th Conf.
Inf. Knowl. Technol., 2013, pp. 478–483.

[24] C. L. Staudt and H. Meyerhenke, “Engineering parallel algorithms
for community detection in massive networks,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 27, no. 1, pp. 171–184, Jan. 2016.

[25] S. Moon, J. G. Lee, M. Kang, M. Choy, and J. W. Lee, “Parallel
community detection on large graphs with MapReduce and
graphchi,” Data Knowl. Eng., vol. 104, pp. 17–31, 2016.

[26] Z. Lu, X. Sun, Y. Wen, G. Cao, and T. L. Porta, “Algorithms and
applications for community detection in weighted networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 11, pp. 2916–2926,
Nov. 2015.

[27] S. Qiao, J. Guo, N. Han, X. Zhang, C. Yuan, and C. Tang,
“Parallel algorithm for discovering communities in large-scale
complex networks,” Chin. J. Comput., vol. 40, no. 3, pp. 687–700,
2017.

[28] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph parti-
tioning for complex networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 9, pp. 2625–2638, Sep. 2017.

[29] T. Takahashi, H. Shiokawa, and H. Kitagawa, “SCAN-XP: Parallel
structural graph clustering algorithm on Intel Xeon Phi cop-
rocessors,” in Proc. 2nd Int. Workshop Netw. Data Analytics, 2017,
Art. no. 6.

[30] S. T. Mai, M. S. Dieu, I. Assent, J. Jacobsen, J. Kristensen, and
M. Birk, “Scalable and interactive graph clustering algorithm on
multicore CPUs,” in Proc. 33rd IEEE Int. Conf. Data Eng., 2017,
pp. 349–360.

[31] J. Shun, F. Roosta-Khorasani, K. Fountoulakis, and M. W. Maho-
ney, “Parallel local graph clustering,” Proc. VLDB Endowment,
vol. 9, no. 12, pp. 1041–1052, 2016.

[32] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph processing in a distributed data-
flow framework,” in Proc. 11th USENIX Symp. Operating Syst. Des.
Implementation, 2014, pp. 599–613.

[33] S. F. A. Lancichinetti, “Limits of modularity maximization in com-
munity detection,” Phys. Rev. E, vol. 84, no. 6, 2011, Art. no. 066122.

[34] J. Leskovec, “SNAP: Stanford large network dataset collection,”
2016. [Online]. Available: http://snap.stanford.edu/data/index.
html

[35] M. E. J. Newman, “The structure and function of complex
networks,” SIAM Rev., vol. 45, no. 2, pp. 247–256, 2003.

1650 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

http://www.wearesocial.com
http://www.wearesocial.com
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

Shaojie Qiao received the BS and PhD degrees
from Sichuan University, Chengdu, China, in
2004 and 2009, respectively. From 2007 to 2008,
he worked as a visiting scholar in the School of
Computing, National University of Singapore. He
is currently a professor in the School of Cyberse-
curity, Chengdu University of Information Tech-
nology, Chengdu, China. He has led several
research projects in the areas of databases and
data mining. He authored more than 40 high qual-
ity papers, and coauthored more than 90 papers.
His research interests include complex networks
and trajectory data mining.

Nan Han received the MS and PhD degrees from
Chengdu University of Traditional Chinese Medi-
cine, Chengdu, China. She is a lecturer in the
School of Management, Chengdu University of
Information Technology, Chengdu, China. Her
research interests include trajectory prediction
and data mining. She is the author of more than
20 papers and she participated in several proj-
ects supported by the National Natural Science
Foundation of China.

YunjunGao received the PhD degree in computer
science from Zhejiang University, China, in 2008.
He is currently a professor in the College of Com-
puter Science and Technology, Zhejiang Univer-
sity, China. His research interests include spatial
and spatio-temporal databases and spatio-textual
data processing. He is a member of the ACM and
the IEEE, and a senior member of the CCF.

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong, Hong Kong, in
2013. He is currently an associate professor in
the School of Computer Science and Technology,
Beijing Institute of Technology, Beijing, China. His
research interests include social network analysis
and graph datamanagement.

Jianbin Huang received the PhD degree in pat-
tern recognition and intelligent systems from the
Xidian University, in 2007. He is a professor in the
School of Software, Xidian University of China.
His research interests include data mining and
knowledge discovery.

Jun Guo received the master’s degree from the
School of Information Science and Technology,
Southwest Jiaotong University. His current rese-
arch area include community discovery in com-
plex networks.

LouisAlbertoGutierrez received the PhDdegree
in computer science from Rensselaer Polytechnic
Institute, in 2014. Hewas aNational ScienceFoun-
dation GK-12 fellow, Mickey Leland Energy fellow
and CHCI 2012 scholar. His research areas
include social computing andmobile technologies.

Xindong Wu received the PhD degree in artificial
intelligence from the University of Edinburgh, in
1993. He is a professor of computer science with
the University of Louisiana at Lafayette, Lafayette.
His research interests include data mining and
knowledge-based systems. He is the editor-in-chief
of the Knowledge and Information Systems, and
the Advanced Information and Knowledge Proc-
essing. He is a fellowof the IEEEand the AAAS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

QIAO ETAL.: A FAST PARALLEL COMMUNITY DISCOVERY MODELON COMPLEX NETWORKS THROUGH APPROXIMATE OPTIMIZATION 1651

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

