Anti-k-labeling of graphs

Xiaxia Guan ${ }^{\text {a }}$, Shurong Zhang ${ }^{\text {a }}$, Rong-hua $\mathrm{Li}^{\text {b }}$, Lin Chen ${ }^{\text {c }}$, Weihua Yang ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, Taiyuan University of Technology, Shanxi, Taiyuan 030024, China
${ }^{\mathrm{b}}$ School of Computer Science \& Technology, Beijing Institute of Technology, Beijing 100081, China
${ }^{\text {c }}$ Lab. de Recherche en Informatique (LRI), CNRS, University of Paris-Sud XI, Orsay 91405, France

A R TICLE I N F O

Keywords:

Anti- k-labeling problem
No-hole anti- k-labeling number
Trees
Channel assignment problem,

Abstract

It is well known that the labeling problems of graphs arise in many (but not limited to) networking and telecommunication contexts. In this paper we introduce the anti-klabeling problem of graphs which we seek to minimize the similarity (or distance) of neighboring nodes. For example, in the fundamental frequency assignment problem in wireless networks where each node is assigned a frequency, it is usually desirable to limit or minimize the frequency gap between neighboring nodes so as to limit interference.

Let $k \geq 1$ be an integer and ψ is a labeling function (anti- k-labeling) from $V(G)$ to $\{1,2, \ldots, k\}$ for a graph G. A no-hole anti-k-labeling is an anti-k-labeling using all labels between 1 and k. We define $w_{\psi}(e)=|\psi(u)-\psi(v)|$ for an edge $e=u v$ and $w_{\psi}(G)=$ $\min \left\{w_{\psi}(e): e \in E(G)\right\}$ for an anti-k-labeling ψ of the graph G. The anti-k-labeling number of a graph $G, \lambda_{k}(G)$, is $\max \left\{w_{\psi}(G): \psi\right\}$. In this paper, we first show that $\lambda_{k}(G)=\left\lfloor\frac{k-1}{x-1}\right\rfloor$, and the problem that determines the anti-k-labeling number of graphs is NP-hard. We mainly obtain the lower bounds on no-hole anti-n-labeling number for trees, grids and n-cubes.

© 2019 Elsevier Inc. All rights reserved.

1. Problems

All graphs considered here are simple and finite. Definitions which are not given here may be found in [1]. Let $k \geq 1$ be an integer. An anti-k-labeling ψ of a graph G is a mapping from $V(G)$ to $\{1,2, \ldots, k\}$. An anti- k-labeling ψ of G is called a no-hole anti-k-labeling if it uses all labels between 1 and k. We define $w_{\psi}(e)=|\psi(u)-\psi(v)|\left(w_{\psi}^{n h}(e)=|\psi(u)-\psi(v)|\right)$ for an edge $e=u v$ and $w_{\psi}(G)=\min \left\{w_{\psi}(e): e \in E(G)\right\}\left(w_{\psi}^{n h}(G)=\min \left\{w_{\psi}^{n h}(e): e \in E(G)\right\}\right)$ for an anti- k-labeling ψ (a nohole anti-k-labeling ψ) of the graph G. The anti-k-labeling number (the no-hole anti-k-labeling number) of a graph $G, \lambda_{k}(G)$ $\left(\lambda_{k}^{n h}(G)\right)$, is $\max \left\{w_{\psi}(G): \psi\right\}\left(\max \left\{w_{\psi}^{n h}(G): \psi\right\}\right)$. We refer to a labeling ψ with $w_{\psi}(G)=\lambda_{k}(G)\left(w_{\psi}^{n h}(G)=\lambda_{k}^{n h}(G)\right)$ as an optimal anti-k-labeling (an optimal no-hole anti-k-labeling) for a graph G. Such (no-hole) anti-k-labeling number problem is our focus in this paper.

The above labeling problem represents a generic class of labeling problems arising in many (but not limited to) networking and telecommunication contexts, in which we seek to minimize the similarity (or distance) of neighboring nodes. For example, in the fundamental frequency assignment problem in wireless networks where each node is assigned a frequency, it is usually desirable to limit or minimize the frequency gap between neighboring nodes so as to limit interference. Another example relates to the content sharing systems such as peer-to-peer file sharing systems, where resources (e.g., files) are

[^0]replicated at network nodes to reduce resource retrieval time and increase system robustness. In these systems, to maximize performance gain, we usually want to place different items in the vicinity of each node or to place the same items far from each other.

These problems can be cast to the labeling problem where we seek a node labeling maximizing the minimum labeling distance among neighboring nodes. Surprisingly, this labeling problem has not yet been analyzed (not even formulated in a mathematical sense).

Let T be a set of nonnegative integers. Find a function $f: V(G) \rightarrow Z^{+}$such that $|f(x)-f(y)| \notin T$ for $x y \in E(G)$. This function f is called a T-coloring of G. The span under f is $\max \{|f(x)-f(y)|: x, y \in V(G)\}$. We denote the minimum span over all T-colorings by $s p_{T}(G)$. If $T=\{0,1, \cdots, m-1\}$, then this T-coloring is called an m-distant coloring. Moreover, if all colors are used, then this m-distant coloring is called a no-hole m-distant coloring. When $m=1$, then an m-distant coloring is an ordinary graph coloring. Hence, m-distant coloring is a generalization of ordinary graph coloring.

In some sense, our focus problem is also m-distant coloring. In fact, $\lambda_{k}(G)>0$ if and only if $k \geq \chi(G)$ for a graph G, where $\chi(G)$ is the chromatic number of the graph G. Hence, $\chi(G)$ is the minimum number of k such that $\lambda_{k}(G)>0$ for a graph G. Since determining the chromatic number of graphs is NP-hard, the anti-k-labeling problem is also NP-hard.

Another related labeling problem (namely, $L(2,1)$-labeling) will be mentioned in Section 4.

2. $\lambda_{k}(G)$ and $\chi(G)$ of graphs

Observation 1. If H is a subgraph of G, then $\lambda_{k}(H) \geq \lambda_{k}(G)$.
Proof. Clearly, for an arbitrary anti-k-labeling $\psi, w_{\psi}(H) \geq w_{\psi}(G)$ holds. Suppose ψ is an optimal anti- k-labeling of G (i.e., $\left.w_{\psi}(G)=\lambda_{k}(G)\right)$, then $w_{\psi}(H) \geq w_{\psi}(G)=\lambda_{k}(G)$. Hence, $\lambda_{k}(H) \geq \lambda_{k}(G)$ by the definition of anti- k-labeling number.

Suppose that G_{1} and G_{2} are two graphs with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$. The union G of G_{1} and G_{2}, denoted by $G=G_{1} \cup G_{2}$, is the graph whose vertex set is $V\left(G_{1}\right) \cup V\left(G_{2}\right)$, and edge set is $E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Observation 2. If $G=G_{1} \cup G_{2}$, then $\lambda_{k}(G)=\min \left\{\lambda_{k}\left(G_{1}\right), \lambda_{k}\left(G_{2}\right)\right\}$.
Proof. $\lambda_{k}(G) \leq \min \left\{\lambda_{k}\left(G_{1}\right), \lambda_{k}\left(G_{2}\right)\right\}$ following from Observation 1 and the fact that G_{1} and G_{2} are subgraphs of $G_{1} \cup G_{2}$. On the other hand, an anti-k-labeling of G_{1} together with an anti- k-labeling of G_{2} makes an anti-k-labeling ψ of $G_{1} \cup G_{2}$ so that $\omega_{\psi}(G) \geq \min \left\{\lambda_{k}\left(G_{1}\right), \lambda_{k}\left(G_{2}\right)\right\}$. Hence $\lambda_{k}(G) \geq \min \left\{\lambda_{k}\left(G_{1}\right), \lambda_{k}\left(G_{2}\right)\right\}$.

Theorem 3. Let G be a graph with chromatic number $\chi=\chi(G) \geq 2$. Then $\lambda_{k}(G)=\left\lfloor\frac{k-1}{\chi-1}\right\rfloor$ for all k.
Proof. We first show that $\lambda_{k}(G) \geq\left\lfloor\frac{k-1}{\chi-1}\right\rfloor$. It suffices to show that there exists an anti- k-labeling ψ such that $w_{\psi}(G)=$ $\left\lfloor\frac{k-1}{\chi-1}\right\rfloor$ for a graph G. Let $V_{1}, V_{2}, \ldots, V_{\chi}$ be a proper χ-coloring of G. Then we consider the following labeling ψ : label the vertices of V_{i} by $1+(i-1)\left\lfloor\frac{k-1}{\chi-1}\right\rfloor, i=1,2, \ldots, \chi$. Note that $1+(\chi-1)\left\lfloor\frac{k-1}{\chi-1}\right\rfloor \leq k$ and $V_{i}(i=1,2, \ldots, \chi)$ is an independent set. We have $w_{\psi}(G)=\min \left\{w_{\psi}(e): e \in E(G)\right\}=\left\lfloor\frac{k-1}{\chi-1}\right\rfloor$. Hence, $\lambda_{k}(G) \geq\left\lfloor\frac{k-1}{\chi-1}\right\rfloor$.

We next show that $\lambda_{k}(G) \leq\left\lfloor\frac{k-1}{\chi-1}\right\rfloor$. Let ψ be an optimal anti-k-labeling of G and $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ be a partition of $V(G)$ under ψ, where the vertices in V_{i} have label $i, i=1,2, \ldots, k$. Assume $\lambda_{k}(G) \geq\left\lfloor\frac{k-1}{\chi-1}\right\rfloor+1$. We colour the vertices of $V_{(i-1)\left\lfloor\frac{k-1}{\chi-1}\right\rfloor+i}, V_{(i-1)\left\lfloor\frac{k-1}{\chi-1}\right\rfloor+i+1}, \ldots, V_{i\left\lfloor\frac{k-1}{\chi-1}\right\rfloor+i}$ with color $c_{i}(i=1,2, \ldots, \chi-2)$, and color the vertices of $V_{(\chi-2)\left\lfloor\frac{k-1}{\chi-1}\right\rfloor+\chi-1}, V_{(\chi-2)\left\lfloor\frac{k-1}{(\chi-1)}\right\rfloor+\chi}, \ldots, V_{k}$ with color $c_{\chi-1}$. Note that $k \leq(\chi-1)\left(\left\lfloor\frac{k-1}{\chi-1}\right\rfloor\right)+\chi-1$. And the vertices of V_{i} are not adjacent to the vertices of $V_{j}(1 \leq j \leq k), j \in\left\{i-\left\lfloor\frac{k-1}{\chi-1}\right\rfloor, i-\left\lfloor\frac{k-1}{\chi-1}\right\rfloor+1, \ldots, i+\left\lfloor\frac{k-1}{\chi-1}\right\rfloor\right\}$ by the assumption $\lambda_{k}(G) \geq\left\lfloor\frac{k-1}{\chi-1}\right\rfloor+$ 1. Thus, the vertices of coloring $c_{i}(i=1,2, \ldots, \chi-1)$ are not adjacent. This implies a proper $(\chi-1)$-coloring of G, a contradiction. Therefore $\lambda_{k}(G)=\left\lfloor\frac{k-1}{\chi-1}\right\rfloor$.

By Theorem 3, $\lambda_{k^{\prime}}(G) \geq \lambda_{k}(G)$ holds for $k^{\prime} \geq k$. And for some integer k, if $\lambda_{k}(G)=m$, then $\frac{k-1}{m+1}+1<\chi(G) \leq \frac{k-1}{m}+1$. In particular, if k is the minimum number with $\lambda_{k}(G)=m$, then $\chi=\frac{k-1}{m}+1$. This is line with the following Theorem.
Theorem $4[5] . s p_{T}(G)=m(\chi-1)$ for $T=\{0,1, \cdots, m-1\}$.

3. $\lambda_{n}^{n h}(G)$ of graphs

In this section we consider no-hole anti-k-labeling for $k=n$.
Observation 5. If G^{\prime} is a spanning subgraph of G, then $\lambda_{n}^{n h}\left(G^{\prime}\right) \geq \lambda_{n}^{n h}(G)$.
Proof. Suppose $\lambda_{n}^{n h}(G)=l$ with an optimal labeling ψ. Let $w_{\psi}^{n h}\left(G^{\prime}\right)=w_{\psi}^{n h}(e)$. Then $\lambda_{n}^{n h}\left(G^{\prime}\right) \geq w_{\psi}^{n h}\left(G^{\prime}\right)=w_{\psi}^{n h}(e) \geq w_{\psi}^{n h}(G)=l$ by the definitions. Therefore, $\lambda_{n}^{n h}\left(G^{\prime}\right) \geq l$.
Observation 6. For a graph G with n vertices, $\lambda_{n}(G) \geq \lambda_{n}^{n h}(G)$ holds for all $n \geq 2$.

Proof. It is obvious that $\lambda_{n}(G) \geq \lambda_{n}^{n h}(G)$.
We denote by δ and Δ the minimum degree and maximum degree of a graph G. We have the following.
Observation 7. For a connected graph G with n vertices, $\lambda_{n}^{n h}(G) \geq 1$ and $\lambda_{n}^{n h}(G) \leq \min \left\{n-\Delta,\left\lfloor\frac{n-1}{\chi-1}\right\rfloor,\left\lfloor\frac{n-\delta+1}{2}\right\rfloor\right\}$ hold for all $n \geq 2$.

Proof. For each no-hole anti-n-labeling $\psi, w_{\psi}^{n h}(G) \geq 1$. Thus, $\lambda_{n}^{n h}(G) \geq 1$.
Note that the vertex with the maximum degree has Δ neighbors which have distinct labels for any no-hole anti-nlabeling. Then $\lambda_{n}^{n h}(G) \leq n-\Delta$.

Let v be the vertex having label $\left\lceil\frac{n}{2}\right\rceil$ for an optimal no-hole anti- n-labeling ψ of G, then there is an edge e incident to v so that $w_{\psi}^{n h}(e) \leq\left\lfloor\frac{n-\delta+1}{2}\right\rfloor$ since there are at least δ vertices adjacent to v in G. Therefore $\lambda_{n}^{n h}(G) \leq\left\lfloor\frac{n-\delta+1}{2}\right\rfloor$.

It is clear that $\lambda_{n}^{n h}(G) \leq \lambda_{n}(G)=\left\lfloor\frac{n-1}{\chi-1}\right\rfloor$ by Observation 6 and Theorem 3. Thus, the claim holds.
Theorem 8 [8]. For a graph $G, \lambda_{n}^{n h}(G) \geq n$ if and only if G has no edges.
Let G be a simple graph. The complement graph G^{c} of G is the simple graph with vertex set $V(G)$, two vertices being adjacent in G^{c} if and only if they are not adjacent in G. An m-path with $m^{\prime}>m$ vertices is a sequence of m^{\prime} distinct vertices of $G, v_{1}, v_{2}, \cdots, v_{m^{\prime}}$, where $v_{i}, v_{i+1}, \cdots, v_{i+m}$ form a clique ($i=1,2, \cdots, m^{\prime}-m$). An m-path with $m^{\prime} \leq m$ vertices is simply a clique of order m^{\prime}. A Hamilton m-path of G is an m-path containing all vertices of G.
Theorem 9 [8]. For a graph $G, \lambda_{n}^{n h}(G) \geq m+1$ if and only if there exists a Hamilton m-path for G^{c}.
By Theorem 9, one can see that the no-hole anti-n-labeling number implies some structural properties of graphs.
Corollary 10. For a graph G, $\lambda_{n}^{n h}(G) \geq 2$ if and only if there exists a Hamilton path for the complement graph G^{c} of G.
Proof. This is an immediate consequence of $m=1$ in Theorem 9.
Corollary 11. For a non-empty graph G (i.e., G has at least an edge), $\lambda_{n}^{n h}(G) \leq \alpha(G)$, where $\alpha(G)$ is the independence number of G.

Proof. Suppose $\lambda_{n}^{n h}(G)=m$. Then G^{c} contains a Hamilton ($m-1$)-path by Theorem 9 , and $m<n$ by Theorem 8 , since G has at least an edge. And so G^{c} contains a clique of order m. That is, G has an independent set of order m. Hence, $\alpha(G) \geq m$.

Next, we consider the no-hole anti-n-labeling number of some special graphs.
3.1. $\lambda_{n}^{n h}(G)$ of complete multipartite graphs

Theorem 12 [8]. If G contains a complete t-partite subgraph H and $|V(G)|-|V(H)|<(t-1)(m-1)$, then $\lambda_{n}^{n h}(G)<m$.
Corollary 13. Let $K_{n_{1}, \cdots, n_{t}}$ be a complete t-partite graph with n vertices. Then $\lambda_{n}^{n h}\left(K_{n_{1}, \cdots, n_{t}}\right)=1$ holds for all $n \geq 2$.
Proof. It is clear according to Observation 7 and $m=2$ of Theorem 12.
We next consider an example for graph operations. Suppose G_{1} and G_{2} are two graphs with disjoint vertex sets. The join G of G_{1} and G_{2}, denoted by $G=G_{1}+G_{2}$, is the graph obtained from $G_{1} \cup G_{2}$ by adding all edges between vertices in $V\left(G_{1}\right)$ and vertices in $V\left(G_{2}\right)$.

Corollary 14. If $G=G_{1}+G_{2}$, then $\lambda_{n}^{n h}(G)=1$.
Proof. If $G=G_{1}+G_{2}$, then G^{\prime} is a spanning subgraph of G, where G^{\prime} is a complete bipartite graph with bipartition $\left(V\left(G_{1}\right)\right.$, $V\left(G_{2}\right)$). Hence $\lambda_{n}^{n h}(G)=1$ by Observation 5 and Corollary 13 .
3.2. $\lambda_{n}^{n h}(G)$ of trees

Theorem 15. Let P_{n} be a path on n vertices. Then $\lambda_{n}^{n h}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.
Proof. Since $\delta\left(P_{n}\right)=1, \lambda_{n}^{n h}\left(P_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$ according to Observation 7.
Let $v_{1}, v_{2}, \ldots, v_{n}$ be vertices of P_{n} such that v_{i} is adjacent to $v_{i+1}, 1 \leq i \leq n-1$. Now we show that $\lambda_{n}^{n h}\left(P_{n}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor$. It suffices to show that there is a no-hole anti-n-labeling ψ such that $w_{\psi}^{n h}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ for P_{n}. Consider the following labeling:
(i) If n is even, then we define

$$
\psi\left(v_{i}\right)= \begin{cases}\frac{n}{2}-\frac{i-1}{2} & i \text { is odd } \\ n+1-\frac{i}{2} & i \text { is even }\end{cases}
$$

Fig. 1. The labels of paths.

(1) the labeling of P_{3}

(2) the labeling of S_{3}

(3) the labeling of some T_{6}

Fig. 2. The labeling of some trees.
(ii) If n is odd, then we define

$$
\psi\left(v_{i}\right)= \begin{cases}\frac{n+1}{2}-\frac{i-1}{2} & i \text { is odd } \\ n+1-\frac{i}{2} & i \text { is even. }\end{cases}
$$

Clearly, for each $e \in E\left(P_{n}\right), w_{\psi}(e)$ is $\frac{n}{2}$ or $\frac{n}{2}+1$ for even n, and $\frac{n-1}{2}$ or $\frac{n+1}{2}$ for odd n. Hence $\lambda_{n}^{n h}\left(P_{n}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor$ (Fig. 1).
We denote by T_{n} a tree with n vertices. Note that a tree is a bipartite graph. A leaf in a tree is a vertex of degree 1 .
Lemma 16. For a tree T_{n} with bipartition $\left(X_{1}, X_{2}\right)$, and $\left|X_{1}\right|<\left|X_{2}\right|$, we have X_{2} contains a leaf of T_{n}.
Proof. By contradiction, suppose that X_{2} contains no leaves of T_{n}. Let $Y_{0}=\left\{u: d(u)=1, u \in V\left(T_{n}\right)\right\}, Y_{i}=\left\{v: \exists u \in Y_{0}\right.$ so that $d(u, v)=i\} \backslash \cup_{j=0}^{i-1} Y_{j}, m=\max \left\{i: Y_{i} \neq \emptyset\right\}$. Note $Y_{i} \subseteq X_{1}\left(Y_{i} \subseteq X_{2}\right.$, resp.) for even (odd, resp.) $i \leq m$. And X_{i} is an independent set for $i=1$, 2. Thus, $\left|Y_{i+1}\right| \leq\left|Y_{i}\right|(i=0,1, \ldots, m-1)$ due to T_{n} without cycle.

If m is even, then $\left|X_{2}\right|=\left|Y_{1}\right|+\left|Y_{3}\right|+\ldots+\left|Y_{m-1}\right| \leq\left|Y_{0}\right|+\left|Y_{2}\right|+\ldots+\left|Y_{m-2}\right|<\left|Y_{0}\right|+\left|Y_{2}\right|+\ldots+\left|Y_{m-2}\right|+\left|Y_{m}\right|=\left|X_{1}\right|$, a contradiction. If m is odd, then $\left|X_{2}\right|=\left|Y_{1}\right|+\left|Y_{3}\right|+\ldots+\left|Y_{m}\right| \leq\left|Y_{0}\right|+\left|Y_{2}\right|+\ldots+\left|Y_{m-1}\right|=\left|X_{1}\right|$, a contradiction. Thus, X_{2} contains a leaf of T_{n}.

Theorem 17. For a tree T_{n} with bipartition $\left(X_{1}, X_{2}\right),\left|X_{i}\right|=q_{i}, i=1,2$, we have $\lambda_{n}^{n h}\left(T_{n}\right) \geq q=\min \left\{q_{1}, q_{2}\right\}$.
Proof. The result clearly holds for $n=1,2$. Without loss of generality, we suppose that $q_{1} \leq q_{2}$ for $n \geq 3$, i.e., $q=q_{1}$. We show that $\lambda_{n}^{n h}\left(T_{n}\right) \geq q$ by giving a no-hole anti-n-labeling ψ_{n} of T_{n} with $w_{\psi_{n}}^{n h}\left(T_{n}\right) \geq q$ and $\psi_{n}(v) \leq q\left(\psi_{n}(v)>q\right.$, resp.) for $v \in X_{1}\left(v \in X_{2}\right.$, resp.). If $n=3$, then $T_{3}=P_{3}$. Let $T_{3}=P_{3}=v_{1} v_{2} v_{3}$. Then $v_{2} \in X_{1}$ and $v_{1}, v_{3} \in X_{2}$. Let ψ_{3} be the optimal no-hole anti-3-labeling defined in Theorem 15 for T_{3}. We have $\psi_{3}\left(v_{1}\right)=3$, $\psi_{3}\left(v_{2}\right)=1$, and $\psi_{3}\left(v_{3}\right)=2$, and $w_{\psi_{3}}^{n h} \geq 1=q$ according to Theorem 15. Hence, $\lambda_{n}^{n h}\left(T_{n}\right) \geq q$ for $n=3$. Moreover, each vertex of X_{1} (X_{2}, resp.) is labeled by $i \leq q$ ($i>q$, resp.) in the labeling ψ_{3}.

We next construct the no-hole anti-n-labeling ψ_{n} of T_{n} by induction on $n \geq 4$. We assume that ψ_{m} is a no-hole anti- k labeling of T_{k} satisfying the requirement for $k<n$. We label T_{n} based on the labeling ψ_{k} of T_{k} as below.

Case 1. $q_{1}<q_{2}$.
By Lemma 16, there exists a leaf $u \in X_{2}$ of T_{n}. Let $T_{n-1}=T_{n}-u$. Clearly, $\left|X_{1}\left(T_{n-1}\right)\right|=\left|X_{1}\left(T_{n}\right)\right|=q_{1}=q,\left|X_{2}\left(T_{n-1}\right)\right|=$ $\left|X_{2}\left(T_{n}\right)\right|-1=q_{2}-1$ and $q_{1} \leq q_{2}-1$. By the induction hypothesis, there exists a no-hole anti- $(n-1)$-labeling ψ_{n-1} so that $w_{\psi_{n-1}}^{n h}\left(T_{n-1}\right) \geq q_{1}$ and each vertex of $X_{1}\left(T_{n-1}\right)\left(X_{2}\left(T_{n-1}\right)\right.$, resp.) is labeled by $i \leq q_{1}\left(i>q_{1}\right.$, resp.). We obtain the labeling ψ_{n} by labeling the vertex u by n based on ψ_{n-1}. It is obvious that $w_{\psi_{n}}^{n h}\left(T_{n}\right) \geq q$, and each vertex of $X_{1}\left(T_{n-1}\right)\left(X_{2}\left(T_{n-1}\right)\right.$, resp.) is labeled by $i \leq q\left(i>q\right.$, resp.) in the labeling ψ_{n} (see Fig. 2(2)).

Case 2. $q_{1}=q_{2}=q=\frac{n}{2}$.
Clearly, there is a vertex (say u) whose neighbors are all leaves except one vertex for any tree T_{n}. Without loss of generality, we assume that $u \in X_{2}$ and u has m leaves as its neighbors. We consider the graph T_{n-m-1} obtained from T_{n} by removing the vertex u and the m neighbors (the m leaves) of u. Note $\left|X_{1}\left(T_{n-m-1}\right)\right|=\left|X_{1}\left(T_{n}\right)\right|-m=\frac{n}{2}-m$, $\left|X_{2}\left(T_{n-m-1}\right)\right|=\left|X_{2}\left(T_{n}\right)\right|-1=\frac{n}{2}-1$. By the induction hypothesis, there exists a no-hole anti- $(n-m-1)$-labeling ψ_{n-m-1} so that $w_{\psi_{n-m-1}}^{n h}\left(T_{n-m-1}\right) \geq \frac{n}{2}-m$ and each vertex of $X_{1}\left(T_{n-m-1}\right)\left(X_{2}\left(T_{n-m-1}\right)\right.$, resp.) is labeled by $i \leq \frac{n}{2}-m\left(i>\frac{n}{2}-m\right.$, resp.).

We now label T_{n} by the following rules (i.e., ψ_{n}): relabel the vertex with label $i>\frac{n}{2}-m$ in T_{n-m-1} by $i+m$, label the vertex u by n, and label the m neighbors of u by $\frac{n}{2}-m+1, \frac{n}{2}-m+2, \cdots, \frac{n}{2}$. Clearly, $\psi_{n}(v) \leq \frac{n}{2}\left(\psi_{n}(v)>\frac{n}{2}\right.$, resp.) for $v \in X_{1}\left(T_{n}\right)\left(v \in X_{2}\left(T_{n}\right)\right.$, resp.) in the labeling ψ_{n} of T_{n}.

Fig. 3. Labels of $P_{5} \times P_{5}$ and $P_{5} \times P_{8}$.

Next we show $w_{\psi_{n}}^{n h}\left(T_{n}\right) \geq \frac{n}{2}$, i.e., $w_{\psi_{n}}^{n h}(e) \geq \frac{n}{2}$ for all $e=u v \in E\left(T_{n}\right)$ in ψ_{n}. If $e \in E\left(T_{n-m-1}\right)$, then $w_{\psi_{n}}^{n h}\left(T_{n}\right) \geq \frac{n}{2}$ since $w_{\psi_{n-m-1}^{n h}}^{n h}\left(T_{n-m-1}\right) \geq \frac{n}{2}-m$ by the induction hypothesis and $w_{\psi_{n}}^{n h}(e) \geq\left|\psi_{n}(u)-\psi_{n}(v)\right|=\left|\psi_{n-m-1}(u)-\psi_{n-m-1}(v)\right|+m$. If $e \notin E\left(T_{n-m-1}\right)$, then e is incident to u. Note that u is labeled by n and its neighboring vertices are labeled by some integer $i \leq \frac{n}{2}$ in ψ_{n}. We have $w_{\psi_{n}}^{n h}(e) \geq \frac{n}{2}$. Hence, $w_{\psi_{n}}^{n h}\left(T_{n}\right) \geq q$ (see Fig. 2(3)).
Remark 18. For an arbitrary bipartition $\left(X_{1}, X_{2}\right),\left|X_{1}\right|=q_{1} \leq\left|X_{2}\right|=q_{2}$, there is a tree T_{n} such that $\lambda_{n}^{n h}\left(T_{n}\right)=q_{1}$. We consider the tree T_{n} as following: T_{n} is obtained by joining $q_{1}-1$ new vertices to leaves in the star graph $K_{1, q_{2}}$. Since $\Delta\left(T_{n}\right)=q_{2}$. Then $\lambda_{n}^{n h}\left(T_{n}\right) \leq n-q_{2}=q_{1}$ by Observation 7. Therefore, $\lambda_{n}^{n h}\left(T_{n}\right)=q_{1}$ by Theorem 17 .

We also pose a conjecture below.
Conjecture 19. For a tree T_{n} with bipartition $\left(X_{1}, X_{2}\right), X_{i}=q_{i}, i=1,2$, we have $\lambda_{n}^{n h}\left(T_{n}\right)=q$, where $q=\min \left\{q_{1}, q_{2}\right\}$.

3.3. $\lambda_{m n}^{n h}(G)$ of 2-Dimensional grids $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$

In this subsection, we generalize the result on paths to 2-Dimensional grids.
Observation 20. Let G is a 2 -Dimensional grid $P_{m} \times P_{n}(m \leq n)$. Then $\lambda_{m n}^{n h}(G) \geq\left\lfloor\frac{m n-m}{2}\right\rfloor$.
Proof. We look the $P_{m} \times P_{n}$ grid (i.e., m rows and n columns) as a chessboard. Like in the chessboard, we have white and black alternating squares (see Fig. 3).
(i) If at least one of m and n is even (i.e., $m n$ is even), we have in the "white" squares the labels from the range [$1, \frac{m n}{2}$] and in the "black" squares the labels from the range $\left[\frac{m n}{2}+1, m n\right]$. Without loss of generality, we assume that the left upper square is white. Take the following labeling ψ : put 1 in the left upper corner (put $\frac{m n}{2}+1$ in the second square in the first row of grid, resp.) and subsequently put in the white (black, resp.) squares from left to right and row by row the upper range labels: $2,3, \ldots, \frac{m n}{2}\left(\frac{m n}{2}+2, \frac{m n}{2}+3, \ldots, m n\right.$, resp.).

Let v be labelled by $i, i \leq \frac{m n}{2}$ ($i>\frac{m n}{2}$, resp.). Then the vertices adjacent to v are labelled by $i+\frac{m n}{2}, i+\frac{m n}{2}-1, i+$ $\left\lfloor\frac{m n-m}{2}\right\rfloor, i+\left\lfloor\frac{m n+m}{2}\right\rfloor\left(i-\frac{m n}{2}, i-\frac{m n}{2}+1, i-\left\lfloor\frac{m n-m}{2}\right\rfloor, i-\left\lfloor\frac{m n+m}{2}\right\rfloor\right.$, resp.). Hence, $\lambda_{m n}^{n h}(G) \geq\left\lfloor\frac{m n-m}{2}\right\rfloor$ (see Fig. 3(1)).
(ii) If m and n are odd (i.e., $m n$ is odd), we have in the "white" squares the labels from the range $\left[1, \frac{m n+1}{2}\right]$ and in the "black" squares the labels from the range $\left[\frac{m n+1}{2}+1, m n\right]$. Take the following labeling ψ : put 1 in the left upper corner (put $\frac{m n+1}{2}+1$ in the second square in the first row of grid, resp.) and subsequently put in the white (black, resp.) squares from left to right and row by row the upper range labels: $2,3, \ldots, \frac{m n+1}{2}\left(\frac{m n+1}{2}+2, \frac{m n+1}{2}+3, \ldots, m n\right.$, resp $)$. We have $\lambda_{m n}^{n h}(G) \geq$ $\frac{m n-m}{2}$ by the argument of (i) (see Fig. 3(2)).

Conjecture 21. Let G is a 2-Dimensional grid $P_{m} \times P_{n}$. Then $\lambda_{m n}^{n h}(G)=\left\lfloor\frac{m n-m}{2}\right\rfloor$, where $m=\min \{m, n\}$.
3.4. $\lambda_{2^{n}}^{n h}(G)$ of n-cubes

Theorem 22. For a cycle C_{n} of length n, $\lambda_{n}^{n h}\left(C_{n}\right)=\left\lfloor\frac{n-1}{2}\right\rfloor$ (Fig. 4).
Proof. Since $\delta\left(C_{n}\right)=2, \lambda_{n}^{n h}\left(C_{n}\right) \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ according to Observation 7 .
Now we show that $\lambda_{n}^{n h}\left(C_{n}\right) \geq\left\lfloor\frac{n-1}{2}\right\rfloor$. It suffices to show that there is a labeling ψ such that $w_{\psi}^{n h}\left(C_{n}\right)=\left\lfloor\frac{n-1}{2}\right\rfloor$. Let C_{n} be $v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n} \rightarrow v_{1}$. Consider the following labeling:
(i) If n is odd, then we define

$$
\psi\left(v_{i}\right)= \begin{cases}\frac{n+1}{2}-\frac{i-1}{2} & i \text { is odd } \\ n+1-\frac{i}{2} & i \text { is even }\end{cases}
$$

Fig. 4. The labels of cycles.

(1) the labeling of Q_{2}

(2) the labeling of Q_{3}

(3) the labeling of Q_{4}

Fig. 5. The labelings of Q_{2}, Q_{3}, and Q_{4}.
(ii) If n is even, then we define

$$
\psi\left(v_{i}\right)= \begin{cases}1 & i \text { is } 1, \\ n & i \text { is } 3, \\ \frac{i-1}{2} & i \text { is odd and } i \neq 1,3, \\ \frac{n}{2}-1+\frac{i}{2} & i \text { is even. }\end{cases}
$$

It is easy to show that $w_{\psi}^{n h}(e), e \in E\left(C_{n}\right)$, defined above is $\frac{n}{2}$ or $\frac{n}{2}-1$ for even n, and $\frac{n-1}{2}$ or $\frac{n+1}{2}$ for odd n. Hence $\lambda_{n}^{n h}\left(C_{n}\right) \geq\left\lfloor\frac{n-1}{2}\right\rfloor$.

An n-cube can be defined inductively as follows. An 1-cube is a P_{2}. An n-cube Q_{n} may be constructed from the disjoint union of two ($n-1$)-cubes Q_{n-1}, by adding an edge from each vertex in one copy of Q_{n-1} to the corresponding vertex in the other copy. The joining edges form a perfect matching.

Theorem 23. Let Q_{n} be an n-cube. Then, for all $n \geq 2, \lambda_{2^{n}}^{n h}\left(Q_{n}\right) \geq 2^{n-2}$.
Proof. We show $\lambda_{2^{n}}^{n h}\left(Q_{n}\right) \geq 2^{n-2}$ by constructing a no-hole anti-2 ${ }^{n}$-labeling ψ_{n} such that $w_{\psi_{n}}^{n h}\left(Q_{n}\right) \geq 2^{n-2}$, and one end has label at most 2^{n-1} and the other end has label greater 2^{n-1} for each edge in Q_{n}. If $n=2$, then $Q_{n}=C_{4}$. By Theorem 22, $\lambda_{2^{2}}^{n h}\left(Q_{2}\right)=1 \geq 2^{2-2}$. Let ψ_{2} be the optimal no-hole anti-2 ${ }^{2}$-labeling defined in Theorem 22 of Q_{2}. Clearly, for each edge e of Q_{2}, one end of e has label at most $2^{2-1}=2$ and the other end of e has label greater 2 under ψ_{2}, see Fig. 5(1). For $m \leq n$, we assume there exists a labeling ψ_{m} such that $w_{\psi_{m}}^{n h}\left(Q_{m}\right) \geq 2^{m-2}$, and one end has label at most 2^{m-1} and the other end has label greater 2^{m-1} for each edge in Q_{m}. We next construct the labeling ψ_{n+1} satisfying the assumption above for Q_{n+1} from the labeling ψ_{n} defined above of Q_{n}^{1} and Q_{n}^{2} as follows.

Note that an $(n+1)$-cube Q_{n+1} can be obtained by adding a perfect matching PM between two copies of an n-cube, denoted by Q_{n}^{1} and Q_{n}^{2} (Each edge of $P M$ joins two vertices having the same labels.). We relabel the vertices with label $i>2^{n-1}$ in Q_{n}^{1} by $i+2^{n-1}$, and we relabel the vertices with label $i \leq 2^{n-1}$ in Q_{n}^{2} by $i+2^{n}+2^{n-1}$.

We next show that the assumption above holds for ψ_{n+1} in Q_{n+1}. Let $e=u v$ be an edge of $E\left(Q_{n+1}\right)$. We firstly assume $e \in E\left(Q_{n}^{1}\right)$ and $\psi_{n}(u)>\psi_{n}(v)$. By the induction hypothesis, we have $\psi_{n}(u)>2^{n-1}, \psi_{n}(v) \leq 2^{n-1}$ and $\psi_{n}(u)-\psi_{n}(v) \geq 2^{n-2}$. Therefore $\psi_{n+1}(u)=\psi_{n}(u)+2^{n-1}>2^{n}, \quad \psi_{n+1}(v)=\psi_{n}(v) \leq 2^{n-1}<2^{n}$, and $w_{\psi_{n+1}}^{n h}(e)=\left|\psi_{n+1}(u)-\psi_{n+1}(v)\right|=\psi_{n+1}(u)-$ $\psi_{n+1}(v)=\psi_{n}(u)+2^{n-1}-\psi_{n}(v) \geq 2^{n-1}+2^{n-2}>2^{n-1}$ according to the definition of ψ_{n+1}. If $e \in E\left(Q_{n}^{2}\right)$ and we suppose $\psi_{n}(u)>\psi_{n}(v)$. Then $\psi_{n}(u)>2^{n-1}, \psi_{n}(v) \leq 2^{n-1}$, and $\psi_{n}(u)-\psi_{n}(v)<2^{n}$. Therefore $\psi_{n+1}(u)=\psi_{n}(u)<2^{n}, \psi_{n+1}(v)=$ $\psi_{n}(v)+2^{n}+2^{n-1}>2^{n}$, and $w_{\psi_{n+1}}^{n h}(e)=\left|\psi_{n+1}(u)-\psi_{n+1}(v)\right|=\psi_{n+1}(v)-\psi_{n+1}(u)=\psi_{n}(v)+2^{n}+2^{n-1}-\psi_{n}(u)>2^{n-1}$. Finally, we assume $e \in E(P M)$. Without loss of generality, we assume $u \in V\left(Q_{n}^{1}\right)$ and $v \in V\left(Q_{n}^{2}\right)$. Then $\psi_{n}(u)=\psi_{n}(v)$. If $\psi_{n}(u) \leq 2^{n-1}$, then $\psi_{n+1}(u)=\psi_{n}(u)<2^{n}, \psi_{n+1}(v)=\psi_{n}(v)+2^{n}+2^{n-1}>2^{n}$, and $w_{\psi_{n+1} n h}(e)=2^{n}+2^{n-1}$. If $\psi_{n}(u)>2^{n}$, then $\psi_{n+1}(u)=\psi_{n}(u)+2^{n-1}>2^{n}, \psi_{n+1}(v)=\psi_{n}(v)<2^{n}$, and $w_{\psi_{n+1}}^{n h}(e)=2^{n-1}$. We complete the proof.

Theorem 24. Let Q_{3} be a 3-cube. Then $\lambda_{8}^{n h}\left(Q_{3}\right)=2$.
Proof. We have $\lambda_{8}^{n h}\left(Q_{3}\right) \geq 2$ by Theorem 23. We next show $\lambda_{8}^{n h}\left(Q_{3}\right) \leq 2$ by contradiction. Suppose $\lambda_{8}^{n h}\left(Q_{3}\right) \geq 3$. Let ψ be an optimal labeling and we denote by v_{i} the vertex with label i under ψ. Then v_{4} may only be adjacent to vertices v_{1}, v_{7}, v_{8}, v_{5} may only be adjacent to vertices v_{1}, v_{2}, v_{8}, and v_{6} may only be adjacent to vertices v_{1}, v_{2}, v_{3} in Q_{3} due to $m c_{8}^{n h}\left(Q_{3}\right) \geq 3$. Note that Q_{3} is a bipartite graph. Let the bipartition of Q_{3} be (X, Y), and $|X|=|Y|=2^{3-1}=4$. Without loss of generality, we assume $v_{4} \in X$. Then $v_{1}, v_{7}, v_{8} \in Y$, and $v_{5}, v_{6} \in X$. Hence, $v_{1}, v_{2}, v_{3}, v_{7}, v_{8} \in Y$, that is, $|Y|=5$, a contradiction.

Note that the bound in Theorem 23 is sharp for $n=2,3 . \lambda_{2^{n}}^{n h}\left(Q_{n}\right) \leq\left\lfloor\frac{2^{n}-n+1}{2}\right\rfloor$ holds by Observation 7. We pose the following problem.

Conjecture 25. For all $n \geq 2, \lambda_{2^{n}}^{n h}\left(Q_{n}\right)=2^{n-2}$.

4. Anti- $L_{d}(2,1)$-labeling of graphs

Given a simple graph $G=(V, E)$ and a positive number d, an $L_{d}(2,1)$-labeling of G is a function $f: V(G) \rightarrow[0, \infty)$ such that whenever $x, y \in V$ are adjacent, if $|f(x)-f(y)| \geq 2 d$, and whenever the distance between x and y is two, if $|f(x)-f(y)| \geq d$. The $L_{d}(2,1)$-labeling number $\lambda(G, d)$ is the smallest number m such that G has an $L_{d}(2,1)$-labeling f with $\max \{f(v): v \in$ $V\}=m$. When $d=1$, the $L_{d}(2,1)$-labeling problem is the $L(2,1)$-labeling problem. The $L(2,1)$-labeling problem of graphs has been discussed for many graph families, see $[2-4,7,9,10]$.

Similarly, we define the $\operatorname{anti-} L_{d}(2,1)$-labeling problem: given a simple graph $G=(V, E)$ and a positive number d, a labeling of G is a function $f: V(G) \rightarrow[1, k]$ such that $|f(x)-f(y)| \geq 2 d$ if $x y \in E(G),|f(x)-f(y)| \geq d$ if $d(x, y)=2$. The anti- $L_{d}(2,1)$ labeling number of G, denoted by $\lambda_{k}^{L}(G)$, is the largest number $2 d$.

By the proofs of Observations 1 and 2, we have the results of Observations 26 and 27 as following.
Observation 26. If H is a subgraph of G, then $\lambda_{k}^{L}(H) \geq \lambda_{k}^{L}(G)$.
Observation 27. If $G=G_{1} \cup G_{2}$, then $\lambda_{k}^{L}(G)=\min \left\{\lambda_{k}^{L}\left(G_{1}\right), \lambda_{k}^{L}\left(G_{2}\right)\right\}$.
Lemma 28 [7]. $\lambda(G, d)=d \cdot \lambda(G, 1)$ for a non-negative integer d.
Lemma 29 [6]. $\lambda(G, 1) \leq \Delta^{2}+\Delta-2$.
Theorem 30. Let G is a simple graph. Then $\lambda_{k}^{L}(G) \geq 2\left\lfloor\frac{k-1}{\Delta^{2}+\Delta-2}\right\rfloor$.
Proof. Suppose that $\lambda(G, d)=m$ for a graph G. Then there exists a labeling $f: V(G) \rightarrow[0, m]$ such that whenever $x, y \in V$ are adjacent, if $|f(x)-f(Y)| \geq 2 d$, and whenever the distance between x and y is two, if $|f(x)-f(Y)| \geq d$. Therefore, there exists a labeling $\psi: V(G) \rightarrow[1, m+1]$, such that $w_{\psi}(G)=2 d$ for $k=m+1=\lambda(G, d)+1$. According to Lemma 28, there exists a labeling ψ, such that $w_{\psi}^{\lambda}(G)=2 \frac{k-1}{\lambda(G, 1)}$ for all k. Therefore $\lambda_{k}^{L}(G) \geq 2\left\lfloor\frac{k-1}{\lambda(G, 1)}\right\rfloor$ for all k according to the definition of the anti- $L_{d}(2,1)$-labeling number $\lambda_{k}^{L}(G)$. Combining with Lemma 29 , we have $\lambda_{k}^{L}(G) \geq 2\left\lfloor\frac{k-1}{\Delta^{2}+\Delta-2}\right\rfloor$.

Theorem 31. If $\lambda_{k}^{L}(G)=2 d$ for a positive number k, then $\frac{k-1}{d+1}<\lambda(G, 1) \leq \frac{k-1}{d}$.
Proof. Suppose that $\lambda_{k}^{L}(G)=2 d$ for a graph G. Then $\lambda(G, d)+1 \leq k<\lambda(G, d+1)+1$. In fact, it is obvious that $\lambda(G, d)+1 \leq$ k, since G has an $L_{d}(2,1)$-labeling for all positive number k and $\lambda(G, d)$ is the smallest number m such that G has an $L_{d}(2,1)$-labeling f. Suppose $k \geq \lambda(G, d+1)+1$. Then there exists a labeling ψ, such that $w_{\psi}^{\lambda}(G)=2(d+1)$. Hence $\lambda_{k}^{L}(G) \geq$ $2(d+1)$ according to the definition of $\lambda_{k}^{L}(G)$, a contradiction. Hence, $d \cdot \lambda(G, 1)+1 \leq k<(d+1) \cdot \lambda(G, 1)+1$ combining with Lemma 28 , that is $\frac{k-1}{d+1}<\lambda(G, 1) \leq \frac{k-1}{d}$.

Acknowledgments

The research is supported by NSFC (No. 11671296), Research Project Supported by Shanxi Scholarship Council of China, Program for the Innovative Talents of Higher Learning Institutions of Shanxi (PIT).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Application, North-Holland, new york, 1976.
[2] T. Calamoneri, The l(2, 1)-labeling problem on oriented regular grids, Comput. J. 54 (2011) 1869-1875.
[3] G.J. Chang, J.J. Chen, D. Kuo, S.C. Liaw, Distance-two labelings of digraphs, Discret. Appl. Math. 155 (2007) 1007-1013.
[4] G.J. Chang, S.C. Liaw, The $l(2,1)$-labeling problem on ditrees, Ars Comb. 66 (2003) 23-31.
[5] M.B. Cozzens, F.S. Roberts, t-colorings of graphs and the channel assignment problem, Congr. Numer. 35 (1982) 191-208.
[6] D. Gonalves, On the $l(p, 1)$-labelling of graphs, Discret. Math. 308 (2008) 1405-1414.
[7] J.R. Griggs, R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discret. Math. 5 (1992) 586-595.
[8] D. Sakai, C. Wang, No-hole ($\mathrm{r}+1$)-distant colorings, Discret. Math. 119 (1993) 175-189.
[9] R.K. Yeh, Labeling Graphs With a Condition at Distance two, University of South Carolina, Columbia, South Carolina, 1990 Ph.D. Thesis.
[10] R.K. Yeh, A survey on labeling graphs with a condition at distance two, Discret. Math. 306 (2006) 1217-1231.

[^0]: * Corresponding author.

 E-mail address: yangweihua@tyut.edu.cn (W. Yang).

