
1518 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Efficient k-Clique Counting on Large Graphs: The
Power of Color-Based Sampling Approaches

Xiaowei Ye , Rong-Hua Li , Qiangqiang Dai, Hongzhi Chen, and Guoren Wang

Abstract—K-clique counting is a fundamental problem in net-
work analysis which has attracted much attention in recent years.
Computing the count of k-cliques in a graph for a large k (e.g.,
k = 8) is often intractable as the number of k-cliques increases
exponentially w.r.t. (with respect to) k. Existing exact k-clique
counting algorithms are often hard to handle large dense graphs,
while sampling-based solutions either require a huge number of
samples or consume very high storage space to achieve a satisfac-
tory accuracy. To overcome these limitations, we propose a new
framework to estimate the number of k-cliques which integrates
both the exact k-clique counting technique and three novel color-
based sampling techniques. The key insight of our framework is
that we only apply the exact algorithm to compute the k-clique
counts in the sparse regions of a graph, and use the proposed
color-based sampling approaches to estimate the number of k-
cliques in the dense regions of the graph. Specifically, we develop
three novel dynamic programming basedk-color set sampling tech-
niques to efficiently estimate the k-clique counts, where a k-color
set contains k nodes with k different colors. Since a k-color set is
often a good approximation of a k-clique in the dense regions of
a graph, our sampling-based solutions are extremely efficient and
accurate. Moreover, the proposed sampling techniques are space
efficient which use near-linear space w.r.t. graph size. We conduct
extensive experiments to evaluate our algorithms using 8 real-life
graphs. The results show that our best algorithm is at least one
order of magnitude faster than the state-of-the-art sampling-based
solutions (with the same relative error 0.1%) and can be up to three
orders of magnitude faster than the state-of-the-art exact algorithm
on large graphs.

Index Terms—k-clique counting, cohesive subgraphs, dynamic
programming, graph coloring, graph sampling.

I. INTRODUCTION

R EAL-LIFE networks, such as social networks, web
graphs, and biological networks, often contain frequently-

occurring small subgraph structures. Such frequent small sub-
graphs are referred to as network motifs [1]. Counting the motifs
is a fundamental tool in many network analysis applications,

Manuscript received 9 November 2022; revised 26 July 2023; accepted 26
August 2023. Date of publication 12 September 2023; date of current version 8
March 2024. This work was supported in part by the National Key Research and
Development Program of China under Grant 2020AAA0108503, in part by the
NSFC under Grants U2241211 and 62072034, and in part by CCF-Huawei Pop-
ulus Grove Fund. Recommended for acceptance by A. Khan. (Corresponding
author: Rong-Hua Li.)

Xiaowei Ye, Rong-Hua Li, Qiangqiang Dai, and Guoren Wang are with
the Beijing Institute of Technology, Beijing 100811, China (e-mail: yex-
iaowei@bit.edu.cn; lironghuabit@126.com; qiangd66@gmail.com; wanggr-
bit@126.com).

Hongzhi Chen is with ByteDance, Beijing 100811, China (e-mail: chen-
hongzhi@bytedance.com).

Digital Object Identifier 10.1109/TKDE.2023.3314643

including social network analysis, community detection, and
bioinformatics [1], [2], [3], [4], [5]. Perhaps the most elementary
motif in a graph is the k-clique which has been widely used in
a variety of network analysis applications [1], [2], [6], [7], [8].

Given a graph G, a k-clique is a complete subgraph of G with
k nodes. Counting the k-cliques in a graph has found many
important applications in dense subgraph mining and social
network analysis. For example, Sariyüce et al. [9] proposed a
nucleus decomposition method to find the hierarchy of dense
subgraphs, which uses the k-clique counting operator as a basic
building block. Tsourakakis [8] studied a k-clique densest sub-
graph problem which also uses the k-clique counting operator
as a building block. Additionally, the k-clique counting operator
has also been applied to detect higher-order organizations in
social networks [10], [11].

Motivated by the above applications, many practical k-clique
counting algorithms have been proposed [12], [13], [14], [15],
[16], [17], [18], [19], [20]. Existingk-clique counting algorithms
can be classified into (1) exact k-clique counting methods,
and (2) sampling-based approximation solutions. Chiba and
Nishizeki [12] developed the first exact k-clique counting al-
gorithm based on k-clique enumeration which is very efficient
on real-life sparse graphs for a small k. Such an algorithm
was recently improved by Finocchi et al. [13] based on a
degree ordering technique. Subsequently, Danisch et al. [15]
further improved this algorithm by using a degeneracy order-
ing technique [21]. More recently, Li et al. [16] developed a
further improved algorithm based on a hybrid of degeneracy
and color ordering technique. All these exact k-clique counting
algorithms are based on k-clique enumeration, which are typi-
cally intractable on large graphs for a large k (e.g., k ≥ 8) due
to combinatorial explosion. To overcome this issue, Jain and
Seshadhri developed an elegant algorithm, called PIVOTER,
based on a classic pivoting technique which was widely used for
pruning the search branches in maximal clique enumeration [22].
The key idea of PIVOTER is that it can implicitly construct a
succinct clique tree (SCT) by using the pivoting technique in
the search procedure. Such a SCT structure maintains a unique
representation of all k-cliques, but its size is much smaller than
the number of k-cliques. PIVOTERwas shown to be much faster
than previous k-clique enumeration based algorithms [12], [13],
[14], [15], [16]. Although PIVOTER is often very efficient
for handling real-life sparse graphs, it may still have a very
deep recursion tree when processing the dense regions of the
graph, which is the main bottleneck of the PIVOTER algorithm.
Moreover, PIVOTER is based on the idea of enumeration of large

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0982-341X
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0002-0181-8379
mailto:yexiaowei@bit.edu.cn
mailto:yexiaowei@bit.edu.cn
mailto:lironghuabit@126.com
mailto:qiangd66@gmail.com
mailto:wanggrbit@126.com
mailto:wanggrbit@126.com
mailto:chenhongzhi@bytedance.com
mailto:chenhongzhi@bytedance.com

YE et al.: EFFICIENT k-CLIQUE COUNTING ON LARGE GRAPHS: THE POWER OF COLOR-BASED SAMPLING APPROACHES 1519

cliques (not necessary maximal cliques) to count the k-cliques.
It is often not very fast on the dense regions of the graph, because
the dense regions of the graph may contain many large cliques
(with complicated overlap relationships), resulting in a large
search tree of PIVOTER (e.g., see the results on the LiveJournal
dataset in [17]).

Approximation solutions based on sampling are typically able
to handle large dense graphs when k is not very large [18],
[20], [23]. However, to achieve a desired accuracy, previous
sampling-based solutions either require a huge number of sam-
ples [18], [24], [25] or consume very high storage space [19],
[20], [23], [26], [27] for a relatively large k (e.g., k ≥ 8). Among
them, a notable sampling-based approximation algorithm is
the TuranShadow algorithm which was proposed by Jain and
Seshadhri [20]. As shown in [20], TuranShadow is much faster
and more accurate than the other previous sampling-based algo-
rithms. The main limitation of TuranShadow is that it needs to
take O(nα(k−1) +m) time and O(nα(k−2)) space to construct
a data structure called Tuŕan Shadow for sampling, where α
denotes the arboricity of the graph [12]. Therefore, on large
graphs, TuranShadow is very costly for a large k. To reduce the
space usage of TuranShadow, the same authors developed an im-
proved TuranShadow algorithm called PEANUTS. PEANUTS
adopts an online sampling solution which does not construct the
Tuŕan Shadow offline. However, PEANUTS still needs to build
a partial Tuŕan Shadow when estimating the k-clique counts of
a sampled node, which sometimes consumes a lot of space.

To overcome the limitations of the state-of-the-art algorithms,
we propose a new framework to estimate the number of k-
cliques in a graph which integrates both the exact PIVOTER
algorithm and two newly-developed sampling-based techniques.
Our framework is based on a simple but effective observation:
PIVOTER is extremely efficient to compute the number of k-
cliques in the sparse regions of the graph, while sampling-based
solutions are often very efficient and accurate to estimate the
k-clique counts in the dense regions of a graph. Base on this
crucial observation, we can first partition the graph into sparse
and dense regions. Then, for the sparse regions, we invoke
PIVOTER to exactly compute the k-clique counts. For the dense
regions, we propose three novel sampling techniques based on a
concept of graph coloring [28] to estimate the k-clique counts.
Specifically, we first present a new concept called k-color set
which denotes a set of k nodes with k different colors. Then,
we propose a dynamic programming (DP) based k-color set
sampling algorithm to estimate the k-clique counts. Since a
k-color set is typically a good approximation for a k-clique in the
dense regions of a graph, our algorithm is extremely efficient and
accurate. In addition, we also propose a novel DP-based k-color
path sampling and a novel DP-based k-triangle path sampling
techniques to further improve the efficiency and accuracy. Here
a k-color path is a connected k-color set and a k-triangle path is a
k-color path with any three consecutive nodes forming a triangle.
These two new concepts are more effective to approximate a
k-clique than thek-color set. Moreover, unlike TuranShadowand
PEANUTS, all of our sampling-based solutions take near-linear
space w.r.t. the graph size.

Contributions: In summary, the main contributions of this
paper are as follows.

� We propose a new algorithmic framework for estimating
k-clique counting which can circumvent the defects of the
existing exact and approximation algorithms. We show that
our framework is extremely efficient and accurate. It can
achieve a 10−5 relative error by sampling a reasonable
number of samples.

� We develop three novel DP-based k-color set sampling
techniques to estimate the number of k-cliques in the dense
regions of the graph. Our novelty is in the algorithmic use of
classic graph coloring technique for sampling. The striking
features of our techniques are that they are not only very
efficient and accurate, but also use near-linear space w.r.t.
the graph size.

� We evaluate our algorithms on 8 large real-life graphs. The
results show that (1) our best algorithm is at least one order
of magnitude faster than the state-of-the-art approximate
algorithm (PEANUTS) to achieve a 0.1% relative error,
using much smaller space; and (2) it can be up to three
orders of magnitude faster than the state-of-the-art exact
algorithm (PIVOTER) on large graphs. For example, on
the hardest dataset LiveJournal with k = 8, TuranShadow
takes more than 120 seconds and PIVOTER cannot termi-
nate within 5 hours, while our best algorithm consumes
around 20 seconds to achieve a 0.1% relative error. More-
over, our algorithms also exhibit an excellent parallel per-
formance which can achieve 12× ∼ 14× speedup ratios
when using 16 threads in our experiments.

Reproducibility: For reproducibility purpose, the source
code of this paper is released at https://github.com/LightWant/
dpcolor.

Organization: The rest of this paper is organized as follows.
In Section II, we describe several key notations, formulate the
problem, summarize several representative existing algorithms
of k-clique counting, and also analyze the defects of these algo-
rithms. In Section III, we propose a novel sampling framework
for k-clique counting. In Section IV, we present the DP-based
k-color set sampling algorithm. The k-color path and k-triangle
path algorithms are developed in Sections V and VI respectively.
Extensive experiments are shown in Section VIII. Finally, we
survey the related work in Section IX and conclude this work in
Section X.

II. PRELIMINARIES

Let G = (V,E) be an undirected graph, where V and E
denotes the set of nodes and edges respectively. Let n and m
be the number of nodes and edges of G respectively. Denote by
Nv(G) the set of neighbors of v inG. The degree of v, denoted by
dv(G), is the size of the neighbor set of v, i.e.,dv(G) = |Nv(G)|.
Given a subset S of V , we denote by G(S) = (VS , ES) the sub-
graph of G induced by S, where ES = {(u, v) ∈ E|u, v ∈ S}.
A k-clique is a complete subgraph of G in which every pair of
nodes is connected by an edge.

Given a graph G and an integer k, the k-clique counting
problem is to compute the number of k-cliques in G. Practical
algorithms for solving the k-clique counting problem are often
based on some ordering-based heuristic techniques [15], [16],
[17], [20].

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

https://github.com/LightWant/dpcolor
https://github.com/LightWant/dpcolor

1520 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Algorithm 1: The PIVOTER Algorithm [17].

Let π : V → {v1, . . ., vn} be a total order of the nodes in
G. For two nodes u and v of G, we say that π(v) < π(u) if
u comes after v in the ordering of π. Then, based on such an
ordering, we can obtain a DAG (directed acyclic graph) �G by
orienting the edges of the undirected graph G. Specifically, for
each undirected edge (u, v) inG, we obtain a directed edge (u, v)
in �G ifπ(u) < π(v), otherwise we get a directed edge (v, u). The
k-clique counting problem in G is equivalent to computing the
number of k-cliques in �G. Existing k-clique counting algorithms
that work on the DAG �G (instead of the original graph G)
can guarantee that each k-clique is only explored once, thus
significantly improving the efficiency.

Note that many different ordering heuristics for k-clique
counting have been developed in the literature [16]. Among
them, a widely-used ordering heuristics is the degeneracy order-
ing [21], where the degeneracy is a metric to measure the sparsity
of a graph [29]. Specifically, the degeneracy ordering of nodes
in G is defined as an ordering {v1, . . ., vn} such that the degree
of vi is minimum in the subgraph of G induced by {vi, . . ., vn}
for each vi in G. We can make use of a classic peeling algorithm
to generate the degeneracy ordering in O(m+ n) time [30].
Let δ be the degeneracy of G. Then, we can easily derive that
dv(�G) ≤ δ. Since δ is often very small in real-world graphs [21],
[29], the degeneracy ordering based k-clique counting algo-
rithms are often very efficient in practice [16]. In this work, we
will also use the degeneracy ordering to design our algorithms.

A. Existing Algorithms and Their Limitations

The PIVOTER algorithm: PIVOTER is the state-of-the-art ex-
act k-clique counting algorithm which was proposed by Jain and
Seshadhri [17]. The PIVOTER algorithm is based on a classic
pivoting technique which has been widely used for pruning the
search branches in maximal clique enumeration [22]. The key
idea of PIVOTER is that it implicitly builds a succinct clique tree

(SCT) by using the pivoting technique in the search procedure.
Such a SCT structure maintains a unique representation of all
k-cliques, but its size is often much smaller than the number
of k-cliques. PIVOTER was shown to be much faster than the
traditional k-clique listing based algorithms [15], [16], [17].
Since we will make use of PIVOTER as a subroutine in our
algorithms, we give the detailed description of PIVOTER in
Algorithm 1.

Algorithm 1 first computes a DAG �G of G based on the
degeneracy ordering (line 1). Then, for each node u ∈ V , the
algorithm invokes the PIVOTER procedure to calculate the num-
ber of (k − 1)-cliques in Nu(�G) (lines 3-4). In the PIVOTER
procedure, it first selects a node with the maximum number
of neighbors in S as a pivot node pv (line 11). The candidate
set S is then divided into three subsets: {pv}, Npv(�G) ∩ S and
S − {pv} −Npv(�G). By these three subsets, the cliques can be
classified into three various types: (1) the k-cliques containing
nodes in both {pv} and Npv(�G) ∩ S, (2) the k-cliques only
containing nodes in Npv(�G) ∩ S, and (3) the k-cliques contain-
ing nodes in S − {pv} −Npv(�G). Then, PIVOTER recursively
computes the total numbers for these three types of k-cliques
(lines 12-16). Note that the first two types of k-cliques can be
counted by invoking PIVOTER with the input set Npv(�G) ∩ S
(line 12), whereas the last type of k-cliques are iteratively
counted for each node inS − {pv} −Npv(�G) (lines 14-16). The
worst-case time complexity of PIVOTER is O(nα3α/3) where
α is the arboricity [12] of the graph and δ/2 ≤ α ≤ δ. Since
α is often very small in real-life sparse graphs, the PIVOTER
algorithm was shown to be very efficient in practice [17].

The TuranShadow algorithm and its variant: TuranShadow is
a representative sampling-based approximation algorithm which
was also proposed by Jain and Seshadhri [20]. As shown in [20],
TuranShadow is much faster and more accurate than the other
sampling-based algorithms. The TuranShadow algorithm first
constructs a data structure, called Tuŕan Shadow, based on
the classic Tuŕan’s theorem which states that a graph must
contain a k-cliuqe if the edge density ρ = m/

(
n
2

)
satisfies

ρ > 1− 1/(k − 1). Specifically, the Tuŕan Shadow, denoted by
S , contains a set of pairs (S, l) where S is a node set and
l ≤ k is an integer. Let GS be the subgraph induced by the
node set S. For each pairs (S, l), the edge density of GS is
larger than 1− 1/(l − 1), thus GS must contain an l-clique by
Tuŕan’s theorem. Jain and Seshadhri [20] showed that there is
a one-to-one mapping between a k-clique in G and an l-clique
in GS for a pair (S, l) in S . Therefore, to count the number of
k-cliques, it is sufficient to calculate the number of l-cliques in
GS for each pair (S, l), which can be efficiently estimated by a
weighted sampling procedure [20]. In [20], Jain and Seshadhri
also developed an algorithm withO(α|S|+m) time complexity
to construct the Tuŕan Shadow, where α is the arboricity of
the graph and |S| = O(nα(k−2)). Since α is typically very
small in real-life graphs, TuranShadow is efficient to estimate
the k-clique counts. Recently, Jain and Seshadhri proposed an
improved Tuŕan Shadow algorithm, namely PEANUTS [27],
which can be considered as the state-of-the-art sampling-based
approximation algorithm. PEANUTS does not construct the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

YE et al.: EFFICIENT k-CLIQUE COUNTING ON LARGE GRAPHS: THE POWER OF COLOR-BASED SAMPLING APPROACHES 1521

Algorithm 2: The Proposed Framework.

Tuŕan Shadow offline. Instead, it builds a partial Tuŕan Shadow
for a sampled node during the sampling procedure, thus it
uses much less space than the original TuranShadow algorithm.
Moreover, PEANUTS is often much faster than TuranShadow,
since it is no need to construct the whole Tuŕan Shadow which
takes much time in the original TuranShadow algorithm.

Limitations of the state-of-the-art algorithms: Although the
PIVOTER algorithm is often very efficient for handling real-
life sparse graphs (because real-life graphs often have a small
arboricity), it is still intractable when processing some hard
instances, such as the LiveJournal graph in [17]. The reason may
be that such hard instances often have a huge number of maximal
cliques, thus the succinct clique tree (SCT) of the PIVOTER
algorithm can be very large, rendering the algorithm intractable.
TuranShadow is generally faster than the exact PIVOTER algo-
rithm for handling dense graphs with a provably small relative er-
ror. However, the main limitations of TuranShadoware twofold:
(1) it uses O(nα(k−2)) space to store the Tuŕan Shadow which
is very costly for large graphs; and (2) it often needs to take
much time to construct the Tuŕan Shadow for large graphs (the
construction time isO(nα(k−1) +m)). Such two limitations are
alleviated by the improved Tuŕan Shadow algorithm PEANUTS.
However, on some large graphs, PEANUTS needs to take much
time to construct the partial Tuŕan Shadow and uses considerable
space, thus it is still not very efficient when processing large
graphs.

III. THE PROPOSED FRAMEWORK

In this section, we propose a new algorithmic framework to
estimate the number of k-cliques which combines both the exact
PIVOTER algorithm and the sampling-based algorithms. The
key idea of our framework is based on a simple but effective
observation. The PIVOTER algorithm often works very efficient
in the sparse regions of the graph, in which the number of k-
cliques is typically not very large. However, in the dense regions
of the graph, PIVOTER may be very costly to compute the
k-clique counts, as the dense regions of the graph may contain a
huge number of k-cliques. On the contrary, the sampling-based
solutions are often very efficient and accurate to estimate the
number of k-cliques in the dense regions of the graph, but they
generally perform very bad in the sparse regions of the graph.
This is because the k-cliques are relatively easier to be sampled

in the dense regions, but they are often very hard to be drawn
from the sparse regions of the graph. Therefore, to overcome
the limitations of both the exact and sampling algorithms, we
can apply the exact PIVOTER algorithm to calculate the k-
clique counts in the sparse regions of the graph, and use the
sampling-based techniques to estimate the number of k-cliques
in the remaining dense regions of the graph. The details of our
framework is shown in Algorithm 2.

Note that in Algorithm 2, we make use of the average degree
of the nodes in the subgraph C = (VC , EC) of G, denoted by
d̄(VC) =

∑
v∈VC

dv(C)/|VC |, as an indicator to measure the
sparsity ofC. We refer to a subgraphC ofG as a dense subgraph
of G if d̄(VC) ≥ k (i.e., it lies in the dense regions of G),
otherwise it is called a sparse subgraph. In Algorithm 2, it first
computes a DAG �G by the degeneracy ordering ofG (line 1). Let
Nv(�G) be the out-neighbors of a node v in �G, and G(Nv(�G)) be
the subgraph induced by Nv(�G) in G. If the average degree of
G(Nv(�G)) is smaller than k, the algorithm invokes PIVOTER
to exactly compute the number of (k − 1)-cliques contained in
Nv(�G) (line 4). Otherwise, the subgraph G(Nv(�G)) is consid-
ered as a dense region of G, and the (k − 1)-cliques contained
in Nv(�G) are estimated by a sampling algorithm (lines 5-6). Let
α be the arboricity [12] of the input graph G = (V,E) and V ′

be the set of nodes in the sparse region of G. Then, we have the
following result.

Theorem 1: The time complexity of Line 4 of Algorithm 2 is

O(|V ′|α	
√

kα+ 1
2
3

	
√

kα+1
2

3).

Proof: For a node v in V ′, we use the notion αv to denote
the arboricity of G(Nv(�G)), mv to denote the count of edges
in G(Nv(�G)), and nv to denote the count of nodes |Nv(�G)|. It
is easy to derive that nv ≤ δ ≤ 2α according to the degeneracy
ordering. By d̄(G(Nv(�G))) < k (Line 4 of Algorithm 2), we
can derive thatmv = |Nv(�G)| × d̄(G(Nv(�G))) < k|Nv(�G)| ≤
2kα. Then, we have αv ≤ 	

√
2mv+nv

2
 ≤ 	
√

kα+ 1
2
 [12].

Thus, the total time complexity is O(
∑

v∈V ′ |Nv(�G)|αv3
αv/3),

because the time complexity of PIVOTER is O(nα3α/3) for a
graph with n nodes and arboricity α [17]. As a result, we can
derive that the time complexity of Line 4 of Algorithm 2 is

O(|V ′|α	
√

kα+ 1
2
3

	
√

kα+1
2

3).�
Note that Theorem 1 shows the time complexity of Algo-

rithm 2 in the sparse region of the graph. Since 	
√

kα+ 1
2
 is

smaller than α (because k is usually very small), our framework
is efficient on the sparse region of the graphs.

The remaining question is how can we devise an efficient
and effective sampling algorithm to estimate the number of
k-cliques in the dense regions of G. Traditional edge sampling
algorithms, such as [18], [31], are often inefficient, because those
algorithms require a considerable number of samples to achieve
a desired accuracy [20]. The color-coding based techniques often
consume a significant number of space [19], [23], [26] and also
they are less efficient than the TuranShadow algorithm [20].
The TuranShadow algorithm and its variant [20], [27], which
are the state-of-the-art sampling-based techniques, also need

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

1522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

much space to store the (paritial) Tuŕan Shadow. Moreover, the
construction time of the (partial) Tuŕan Shadow is often very
long for large graphs, because the worst-case time complexity
of TuranShadow is exponential. In Sections IV, V and VI, we
will propose three novel and efficient sampling algorithms to
tackle this problem.

Parallel implementation: Note that the proposed framework
(Algorithm 2) can be easily parallelized, because the number
of k-cliques in the subgraph induced by the out-neighbors for
each node in �G is independent. Specifically, in lines 3-5 of
Algorithm 2, we can process the nodes in the sparse regions in
parallel by independently invoking the PIVOTER algorithms. In
the dense regions, the sampling-based techniques are also easily
to be parallelized, because we can always draw t independent
samples in parallel. In our experiments, we will show that our
parallel implementations can achieve a near-linear speedup ratio
on real-life graphs.

IV. K-COLOR SET SAMPLING

In this section, we develop a novel sampling approach to
estimate the k-clique counts in the dense regions of the graph,
called k-color set sampling. Our technique is based on a concept
of graph coloring [28], [32], [33]. Specifically, we first color
the nodes in a graph such that each pair of adjacent nodes are
colored with different colors. Let χ be the number of colors
that are used to color all nodes in the graph G. The graph
coloring procedure assigns an integer color value taking from
[1, . . . , χ] to each node in G, and no two adjacent nodes have
the same color value. Note that since the minimum coloring
problem (χ is minimum) is NP-hard [28], we use a linear-time
greedy coloring algorithm [32], [33] to obtain a feasible coloring
solution. Based on a feasible coloring solution, we define a
concept called k-color set as follows.

Definition 1: A set of nodes Vk in the colored graph G is
called a k-color set if it contains k nodes with k different colors.

Note that by Definition 1, the nodes of any k-clique must form
a k-color set. In particular, we have the following lemma.

Lemma 1: Given a graph G, all k-cliques must be contained
in the set of all k-color sets.

Let cntk(G, clique) and cntk(G, color) be the number of k-
cliques and k-color sets of G respectively. Denoted by ρc the k-
clique density of a graph G which is defined as the ratio between
the number of k-cliques and the number of k-color sets ofG, i.e.,
ρc =

cntk(G,clique)
cntk(G,color) . Intuitively, in the dense regions of the graph

G, a k-color set is likely to be a k-clique. Therefore, the k-clique
density ρc of the dense region of G is often not very small. As
a consequence, an effective sampling technique to estimate the
number of k-cliques can be obtained by estimating ρc.

There are two nontrivial problems needed to be tackled to
develop such a sampling technique. First, we need to devise
an efficient algorithm to compute the number of k-color sets.
Second, to estimate ρc, we need to develop a uniform sampling
mechanism to sample the k-color sets. Below, we will propose
a dynamic programming algorithm to solve these issues.

A. DP-Based k-Color Set Sampling

Here we first propose a DP algorithm to compute the number
of k-color sets. Then, we show how to use the DP algorithm to
uniformly sample a k-color set.

Counting the number of k-color sets: Let χ be the number
of colors of the graph G obtained by the greedy coloring al-
gorithm [32], [33]. Denote by ai the number of nodes in G
with the color i ∈ [1, χ]. Let Gi be the subgraph of G that only
contains the nodes of G with color values no larger than i, i.e.,
Gi = (Vi, Ei), where Vi = {v ∈ V |c(v) ≤ i}, Ei = {(u, v) ∈
E|u, v ∈ Vi}, and c(v) is the color value of v in G. Let F (i, j)
be the number of j-color sets inGi. Then, we have the following
recursive function for all i, j ∈ [1, χ].

F (i, j) = ai × F (i− 1, j − 1) + F (i− 1, j). (1)

The key idea of (1) is that the number of j-color sets in Gi can
be derived by considering two cases: (1) the color i is included
in the j-color sets; and (2) the color i is not included in the
j-color sets. For the first case, the number of j-color sets in Gi

is equal to ai times the number of (j − 1)-color sets in Gi−1,
i.e., ai × F (i− 1, j − 1). For the second case, the number of
j-color sets is equal to the number of j-color sets inGi−1, which
is F (i− 1, j). Thus, the total number of j-color sets in Gi is the
sum over these two cases. Clearly, the number of k-color sets in
G is equal to the number of k-color sets in Gχ, i.e., F (χ, k). In
addition, the initial states of F (i, j) are as follows:{

F (i, 0) = 1, for all i ∈ [0, χ],
F (i, j) = 0, for all i ∈ [0, χ], j ∈ [i+ 1, χ].

(2)

Based on (1) and (2), we can compute the number of k-color
sets F (χ, k) in O(kχ) time by dynamic programming. The
detailed implementation of the DP algorithm can be found in
the DPCount procedure of Algorithm 3 (see lines 5-12).

From counting to uniformly sampling: Here we propose an
efficient approach to uniformly sample a k-color set based on
the k-color set counting technique. For convenience, we refer
to a set of k different colors selected from [1, χ] as a k-color
class. Clearly, in a graph G, a k-color class may contain a set of
k-color sets.

To generate a uniform k-color set, a potential method is that
we first sample a k-color class, and then we randomly select a
node inGwith color i for each i in the sampledk-color class. The
challenge of this method is that how can we sample the k-color
class to guarantee that the resulting k-color set is uniformly
generated. Obviously, the straightforward method that uniformly
picksk different colors from [1, χ] is incorrect in our case. This is
because the numbers of k-color sets contained in various k-color
classes are different. Thus, uniformly sampling a k-color class
from [1, χ]will introduce biases for generating a uniformk-color
set.

To overcome this challenge, we propose a DP algorithm to
sample a k-color class which can guarantee that the resulting
k-color set is uniformly drawn. In particular, given a j-color class
in Gi, it either (1) contains the color i, or (2) does not contain
the color i. If the first case is true, the other j − 1 colors of the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

YE et al.: EFFICIENT k-CLIQUE COUNTING ON LARGE GRAPHS: THE POWER OF COLOR-BASED SAMPLING APPROACHES 1523

Algorithm 3: DPSampler(G,χ, k).

j-color class are selected from [1, i− 1] in Gi−1. However, for
the second case, the j-color class must be selected from [1, i− 1]
in Gi−1. Therefore, we can sample a k-color class in G based
on a similar DP equation as shown in (1). More specifically, to
sample a j-color class, we define the probability of selecting the
color i in Gi as

p(i,j) =
ai × F (i− 1, j − 1)

F (i, j)
. (3)

Clearly, the probability that does not choose the color i inGi is
1− p(i,j) = F (i− 1, j)/F (i, j). Based on (3), we can sample a
j-color class using the following recursive sampling procedure.
In each recursion, we pick a color i in Gi with the probability
p(i,j). If the color i is sampled, we recursively sample the (j −
1)-color class in Gi−1. Otherwise, we recursively sample the
j-color class in Gi−1. After obtaining a k-color class, a k-color
set is generated by randomly selecting a node with each color i in
the k-color class. The detailed implementation of our algorithm
for uniformly sampling a k-color set is shown in Algorithm 3.

Algorithm 3 first invokes the DP procedure to computeF (i, j)
for every i ∈ [1, χ] and j ∈ [1, k] (line 1 and lines 5-12). Then,
the algorithm computes the probability p(i,j) based on (3)
(line 2). After that, the algorithm calls the recursively sampling
procedure to uniformly generate ak-color set (line 3 and lines 13-
19). The following results ensure the correctness of Algorithm 3.

Lemma 2: The DPSampling procedure in Algorithm 3 out-
puts a k-color set of G if χ ≥ k.

Proof: On the one hand, it is easy to verify that there are at
most k colors outputted by the DPSampling procedure, since
p(i,0) = 0 and DPSampling will terminate immediately when

j = 0. On the other hand, by (3), we can derive that p(i,i) = 1.
This is because F (i− 1, i) = 0 by definition, thus 1− p(i,i) =
F (i− 1, i)/F (i, i) = 0. As a result, the probability of sampling
a color i with p(i,i) is always 1, thus there are at least k colors
that are sampled by DPSampling ifχ ≥ k. Putting it all together,
the lemma is established.�

Theorem 2: Algorithm 3 outputs a uniform k-color set.
Proof: Let X be the event of a random k-color class of G

sampled by DPSampling. For each color j from 1 to χ, let Yj be
an indicator random variable, which is equal to 1 if the color j
is selected in the event X , otherwise it is equal to 0. Let Pr(X)
be the occurrence probability of the event X . Then, we have the
following equation:

Pr(X) = Pr

((χ∑
i=1

Yi

)
= k

)
. (4)

Recall that DPSampling draws k colors following the decreasing
order of the color values (i.e., from χ to 1). For each color
j ∈ [1, χ], the probability of selecting the color j in Gi is p(i,j).
Assume that the sampled k-color class ofG isC = {c1, . . ., ck},
where each ci is a color value of G and c1 > c2 > · · · > ck.
Clearly, a k-color class C partitions the interval [1, χ] into at
most 2k + 1 sub-intervals as {[c1 + 1, χ], [c1, c1], [c2 + 1, c1 −
1], . . . , [ck + 1, ck−1 − 1], [ck, ck], [1, ck − 1]}. Note that DP-
Sampling only selects a color in the sub-intervals [ci, ci] for
every i = 1, . . . , k, and no color is selected in the other sub-
intervals. Therefore, the probability of Pr((

∑χ
i=1 Yi) = k) can

be computed by

F (χ− 1, k)

F (χ, k)
× F (χ− 2, k)

F (χ− 1, k)
× · · · × F (c1, k)

F (c1 + 1, k)

× ac1 × F (c1 − 1, k − 1)

F (c1, k)
× F (c1 − 2, k − 1)

F (c1 − 1, k − 1)
× · · ·

× F (c2, k − 1)

F (c2 + 1, k − 1)
× ac2 × F (c2 − 1, k − 2)

F (c2, k − 1)

× · · · × F (ck, 1)

F (ck + 1, 1)
× ack × F (ck − 1, 0)

F (ck, 1)

=
ac1 × ac2 × · · · × ack

F (χ, k)
. (5)

After obtaining a k-color class C, the algorithm further samples
k nodes with k different colors in C from G. Let Pr(k-color set)
be the probability of sampling a k-color set from G. Then, we
have

Pr(k-color set)

= Pr(k nodes with different colors|X)× Pr(X)

=
1

ac1 × ac2 × · · · × ack
× ac1 × ac2 × · · · × ack

F (χ, k)

=
1

F (χ, k)
=

1

cntk(G, color)
(6)

By (6), each k-color set is uniformly sampled, thus the theorem
is established.�

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

1524 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Fig. 1. Illustration of the three proposed color-based sampling techniques.

The following theorem shows the complexity of Algorithm 3.
Theorem 3: Suppose that the graphG is colored and the nodes

in each color group are obtained. Then, both the time and space
complexity of Algorithm 3 are O(χk).

Proof: Clearly, the time complexity of the DP procedure for
counting the number of k-color sets is O(χk). In the DPSam-
pling procedure, we can randomly choose a node with color i
in constant time if the color groups are obtained (line 17). The
total time costs of the DPSampling procedure are bounded by
O(χ+ k). As a result, the time complexity of Algorithm 3 is
O(χk). For the space complexity, Algorithm 3 only requires
O(χk) additional space to store the DP table F and the proba-
bilities p.�

Example 1: Fig. 1(a) is a colored graph with χ = 4. The
color values of nodes {0, 1, 2, 3, 4, 5, 6} is {1, 2, 2, 3, 4, 3, 4},
respectively. Clearly, we have a1 = 1 and ai = 2 for i = 2, 3, 4
respectively. Initially, we have F (i, 0) = 1 for all i ∈ [0, 4],
and F (i, j) = 0 for all i ∈ [0, 4], j ∈ [i+ 1, 4]. By (1), we
have F (1, 1) = a1 × F (0, 0) + F (0, 1) = a1 = 1. F (1, 1) =
1, which means that there is only one way to choose a vertex with
color 1. Similarly, we get F (2, 1) = a2 × F (1, 0) + F (1, 1) =
3, which means that there are 3 different ways to choose a vertex
from the vertices with colors 1 and 2. The DP table is shown
in Fig. 1(b). Then, we anlayze the probability of sampling the
three nodes {0, 2, 3} with color 1,2,3 respectively. Note that
the probability of color 4 not being sampled is 1− p(4,3) =
F (3,3)
F (4,3) =

1
5 . Then, the probability of color 3 being sampled is

p(3,3) =
a3×F (2,2)
F (3,3) = 1. Thus, one vertex with color 3 should

be chosen and the probability of node 3 being sampled is 1
2 .

Likewise, the probability of node 2 and 0 is 1
2 and 1, respectively.

Finally, the probability of {0, 3, 4} being sampled is 1
20 .

B. Estimating the Number of k-Cliques

By Theorem 2, we can first make use of Algorithm 3 to
uniformly sample k-color sets from G, and then estimate the
clique density ρc in the k-color sets of G. After that, the number
of k-cliques in G can be estimated by ρc × F (χ, k). Based on
this idea, we propose a weighted sampling algorithm to estimate
the number of cliques in the dense regions of G. The detailed
implementation of our algorithm is shown in Algorithm 4.

Let S be a set of nodes whose neighborhood subgraphs are
dense regions of G, i.e., d̄(G(Nv(�G))) ≥ k for each v ∈ S.
Algorithm 4 first colors the graph using a linear-time greedy

Algorithm 4: Estimating the Number of k-Cliques by k-
Color Set Sampling.

algorithm [32], [33] (line 1). Then, the algorithm invokes the
DPCount procedure to compute the number of k-color sets for
each v ∈ S (lines 3-4). Let cntKCol be the total number of
k-color sets (line 5). Then, we can obtain a probability distribu-
tion D over S where p(v) = Fv(χ, k − 1)/cntKCol for each
v ∈ S (line 6). After that, Algorithm 4 draws t k-color sets by (1)
sampling a node v ∈ S with probabilityp(v) (line 9), and (2) uni-
formly sampling a (k − 1)-color set from G(Nv(�G)) (line 10).
The algorithm computes the k-clique density ρc in the sampled
k-color sets (lines 11-13), and then estimates the k-clique count
as ρc × cntKCol (line 14). The following theorem shows that
Algorithm 4 can obtain an unbiased estimator.

Theorem 4: Algorithm 4 outputs an unbiased estimator for
the number of k-cliques in the dense regions of G.

Proof: LetXi = 1 if the ith sampled k-color set is a k-clique,
otherwise Xi = 0. Observe that

Pr(Xi = 1) =
∑
v∈S

[Pr(choose v from D)

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

YE et al.: EFFICIENT k-CLIQUE COUNTING ON LARGE GRAPHS: THE POWER OF COLOR-BASED SAMPLING APPROACHES 1525

× Pr(choose a clique from G(Nv(�G)))]. (7)

In the summation, the former probability is
Fv(χ,k−1)

∑
v∈S cntk(G(Nv(�G)),color)

, and the latter is exactly

cntk(G(Nv(�G)),clique)
Fv(χ,k−1) . Consequently, we have Pr(Xi = 1) =

∑
v∈S cntk(G(Nv(�G)),clique)

∑
v∈S cntk(G(Nv(�G)),color)

. This implies that the probability of

sampling a k-clique is exactly the k-clique density in the dense
regions. By the linearity of expectation, we have

E

[
cntKCol ×

∑
i≤t Xi

t

]

=
∑
v∈S

cntk(G(Nv(�G)), color)×
∑

i≤t E[Xi]

t

=
∑
v∈S

cntk(G(Nv(�G)), clique). (8)

Therefore, Algorithm 4 returns an unbiased estimator of the k-
clique count in the dense regions of G.�

By applying the classic Chernoff bound, we can easily derive
that Algorithm 4 is able to produce a 1− ε approximation of the
k-clique count in the dense regions of the graph.

Theorem 5: Algorithm 4 returns a 1− ε approximation of the
number of k-cliques in the dense regions of G with probability
1− 2σ if t ≥ 3

ρcε2
ln 1

σ , where ε and σ are small positive values
and t is the sample size.

Proof: Denote by ρ̂c the estimator of the k-clique density
(line 13 of Algorithm 4). Since our estimator is unbiased, we
have E[ρ̂c] = ρc. Then, the expected number of k-cliques in the
t samples is E[ρ̂ct] = ρct. Based on the Chernoff bound, we
easily obtain the following results:

Pr(ρ̂ct ≤ (1− ε)ρct) ≤ exp

(
−ε2ρct

2

)
≤ exp

(
−ε2ρct

3

)
,

(9)

Pr(ρ̂ct ≥ (1 + ε)ρct) ≤ exp

(
−ε2ρct

3

)
. (10)

Further, we have:

Pr

(|ρ̂c − ρc|
ρc

≥ ε

)
≤ 2 exp

(
−ε2ρct

3

)
. (11)

Let exp(− ε2ρct
3) ≤ σ. Then, we can derive that t ≥ 3

ρcε2
ln 1

σ .
This completes the proof.�

Note that by Theorem 5, the sample size of our algorithm
relies on the k-clique density ρc. Since ρc is often not very
small in the dense regions of a graph, Algorithm 4 is expected
to be very efficient in practice which is also confirmed in our
experiments. Below, we analyze the time and space complexity
of Algorithm 4.

Theorem 6: Algorithm 4 consumes O((|S|+ t)χk + k2t+
m+ n) time and O(m+ n+ χk) space.

Proof: For the time complexity, Algorithm 4 takes O(m+
n) time to obtain a feasible graph coloring. Then, it consumes
O(|S|χk) time to computeFv for each v ∈ S. After that, to draw
a k-color set, the algorithm takes O(χk) time and O(k2) time

to check whether it is a clique. Thus, the total time used in the
k-color set sampling stage isO(t(χk + k2)). As a consequence,
the time complexity of Algorithm 4 is O((|S|+ t)χk +m+
n+ k2t). For the space complexity, the algorithm needs to store
the graphG and the colors which takesO(m+ n) space in total.
Additionally, the algorithm uses O(χk) space to store the DP
table when sampling a k-color set. Note that the algorithm does
not store all the DP tables for all samples. Thus, the total space
overhead of Algorithm 4 is O(m+ n+ χk).�

Remark: The proposedk-color set sampling algorithm is com-
pletely different from the traditional color coding technique [19],
[23], [26] for k-clique counting. The color coding technique
randomly assigns a color to each node (it is actually not a valid
graph coloring), in which two adjacent nodes may have the
same color. However, our k-color set based sampling algorithm
is based on the graph coloring technique which requires two
adjacent nodes having different colors. For the color coding
technique, the probability of each k-clique being colored with
k different colors is k!

kk [19]. With the increase of k, such a
probability decreases dramatically. However, our technique can
ensure that the k-clique of G is a k-color set no matter what k
is. Moreover, unlike color coding, the probability of sampling
k nodes with k different colors from G (the colored graph) is
nonuniform in our algorithm.

V. CONNECTED k-COLOR SET SAMPLING

Recall that to achieve a 1− ε approximation, the sample size
of Algorithm 4 heavily relies on the k-clique density over the
k-color sets, i.e., ρc (see Theorem 5). Although the dense regions
of a graph G often have a relatively high ρc, it may still be very
small in some cases as the k-color sets do not fully capture the
clique property. To improve the effectiveness of the sampling
algorithm, we propose a novel technique which can further boost
the k-clique density by considering the connectivity of the k-
color set.

A k-color set is definitely not a k-clique if the subgraph
induced by the k-color set is not connected. Clearly, such discon-
nected k-color sets are unpromising samples for our sampling
algorithm. Therefore, to improve the sampling performance, a
natural question is that can we directly sample the connected
k-color sets from G? In this section, we answer this question af-
firmatively by devising a novel k-color path sampling technique.
The insight is that we only sample the k-color set in which there
exists a simple path with length k − 1 in the subgraph induced
by the k-color set. For convenience, we refer to such a connected
k-color set as a k-color path.

Similar to sampling k-color sets in G, we also need to uni-
formly sample the k-color paths. Unfortunately, the solutions
proposed in Section IV are no longer applicable for sampling
k-color paths. Below, we develop a new DP-based sampling
technique to uniformly generate the k-color paths.

A. DP-Based k-Color Path Sampling

Counting the number of k-color paths: We start by developing
an algorithm to count the number of k-color paths in a graph G.
We assume that the graph G is colored with the color values

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

1526 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

selected from [1, χ]. Based on the color values, we can obtain a
color ordering by sorting the nodes in a non-decreasing ordering
of their color values. Note that we can use the nodes IDs to break
ties to obtain a total ordering. It is worth mentioning that such a
color ordering was used in the k-clique listing algorithms [16].
Clearly, we are able to construct a DAG �G by the color ordering,
where a directed edge (u, v) ∈ �G is obtained by orienting the
direction of (u, v) ∈ G if v comes after u in the color ordering.
Based on the DAG �G, we can obtain the following results.

Theorem 7: Let �G be the DAG generated by the color order-
ing. Then, any (k − 1)-path in �G forms a k-color path.

Proof: Let P = {(v1, v2), (v2, v3), . . . , (vk−1, vk)} be a
(k − 1)-path in �G. By the color ordering, we have c(vi) ≤
c(vi+1) for every i ∈ [1, k − 1], where c(vi) denotes the color
value of vi. Since any two adjacent nodes have different colors,
we have c(vi) �= c(vi+1) for each i ∈ [1, k − 1]. As a result, the
path S is a k-color path.�

Theorem 8: Let �G be the DAG generated by the color order-
ing. Then, any k-clique C = {v1, v2, . . . , vk} in G is a k-color
path in �G.

Proof: Let C = {v1, v2, . . . , vk} be a k-clique in G. Clearly,
the nodes in C have different colors. Suppose without
loss of generality that c(v1) < c(v2), . . . , c(vk). Since �G is
generated by the color ordering, there must exist a path
{(v1, v2), . . . , (vk−1, vk)} in �Gwhich also forms a valid k-color
path.�

Note that a k-color path in �G does not necessarily form a
k-clique in G. However, the set of k-color paths is clearly a
subset of the set of k-color sets. Thus, the k-clique density over
the k-color paths, denoted by ρp, must be no smaller than the
k-clique density over the k-color sets.

Example 2: Reconsider the graph shown in Fig. 1(a).
Clearly, we have c(0) < c(1) = c(2) < c(3) = c(5) < c(4) =
c(6). Fig. 1(c) plots all the 3-color paths, and Fig. 1(d) shows all
the 4-color paths. The paths with dashed circles are not cliques,
while the others are cliques. We can also easily derive that the
3-clique density is 6

10 and the 4-clique density is 1
3 . As expected,

the count of k-color paths is much smaller than the count of
k-color sets.

To estimate the number of k-cliques inG, we need to compute
ρp and the number ofk-color paths as well. Let �Gvi

be a subgraph
of �G induced by {vi, . . ., vn}. Denote by H(vi, j) the number
of j-paths containing the node vi in �Gvi

. Clearly, each j-path
containing vi in �Gvi

must start from vi, since the node vi in �Gvi

only has out-neighbors. Thus, the total number of (k − 1)-paths
of �G, denoted by cntk−1(�G, path), can be computed by the
following formula:

cntk−1(�G, path) =
∑
vi∈�G

H(vi, k − 1). (12)

Observe that the second node in each (k − 1)-path containing
vi in �Gvi

must be an out-neighbor of vi. Thus, if we have the
count of the (j − 2)-paths containing vx in �Gvx

for each vx ∈
Nvi

(�Gvi
), the count of (j − 1)-paths containing vi in Gvi

can
be easily obtained. Specifically, we have the following recursive

Algorithm 5: DPPathSampler(G, k).

equation:

H(vi, j) =
∑

vx∈Nvi
(�Gvi

)

H(vx, j − 1). (13)

Initially, we have{
H(vi, 0) = 1, for all i ∈ [1, n],
H(vi, j) = 0, for all i ∈ [1, n], j ∈ [1, k − 1].

(14)

Based on (12), (13) and (14), we can easily devise a DP al-
gorithm to compute cntk−1(�G, path) which is detailed in the
DPPathCount procedure of Algorithm 5 (lines 5-12). It is easy
to derive that the time complexity of DPPathCount is O(knχ),
where χ is the maximum color value of G. This is because the
cardinality of the out-neighbors for any node in �G is bounded
by O(χ).

Sampling a uniform k-color path: Similar to the DP-based
sampling technique developed in Section IV-A, here we also
propose a DP-based sampling algorithm to uniformly sample
the k-color paths. Suppose without loss of generality that there
is a randomly sampled k-color path of �G starting from a node v,
denoted by Pv. Then, for the second node in Pv, it must be an
out-neighbor of v in �G. According to the DP equation ((13)), the
number of (k − 1)-paths starting from v is equal to the sum of
the number of (k − 2)-paths starting from each node in Nv(�G).
Therefore, the next node of a random k-color path starting from
v, denoted by u, should be drawn from Nv(�G) with probability
H(u,k−2)
H(v,k−1) by (13). We can recursively perform this sampling

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

YE et al.: EFFICIENT k-CLIQUE COUNTING ON LARGE GRAPHS: THE POWER OF COLOR-BASED SAMPLING APPROACHES 1527

procedure to obtain a k-color path. The detailed implementation
of this sampling technique is shown in Algorithm 5.

Algorithm 5 first constructs a DAG �G by the color ordering
(line 1). Then, the algorithm invokes DPPathCount to derive
the DP table H (line 2). After that, Algorithm 5 calls the
DPPathSampling procedure to uniformly sample a k-color path
(line 3). Specifically, when sampling a node u from Nv(�G),
DPPathSampling needs to set a probability distribution D over
the setNv(�G) based on (13) (lines 16-18). After choosing a node
u, DPPathSampling turns to sample the next node from Nu(�G)
(line 19). The DPPathSampling procedure terminate when k
nodes are sampled.

It is important to note that Algorithm 5 can always obtain a
k-color path if the DAG �G contains at least one k-color path.
This is because in lines 16-18, if a node u is sampled, then
H(u, k − i− 1) must be larger than 0, indicating that the out-
neighborhood Nu(�G) must be non-empty. As a consequence, if
there is a k-color path in �G, the for loop in line 15 of Algorithm 5
will be executed k times which results in a k-color path. The
following theorem shows that Algorithm 5 can obtain a uniform
k-color path.

Theorem 9: Algorithm 5 outputs a uniform k-color path.
Proof: Consider a path {v1, v2, . . . , vk}. Let X be the event

of this path being sampled by Algorithm 5. Denote by Yi the
event of a node vi appearing in the path. Clearly, the probability
of the first node v1 being sampled is Pr(Y1) =

H(v1,k−1)∑
u∈V H(u,k−1) .

Observe that in the ith-iteration of the for loop (line 15), the dis-
tribution D for node vi is constructed from Nvi−1

(�G). The node
vi being sampled in the for loop can be represented as an event
Yi|Yi−1 (conditioned on Yi−1), thus we have Pr(Yi|Yi−1) =

H(vi,k−i)∑
u∈Nvi−1 (�G) H(u,k−i) . As a consequence, we have

Pr(X) = Pr(Y1)× Pr(Y2|Y1)× · · · × Pr(Yk|Yk−1)

=
H(v1, k − 1)∑
u∈V H(u, k − 1)

× H(v2, k − 2)∑
u∈Nv1

(�G) H(u, k − 2)
×

· · · × H(vk, 0)∑
u∈Nvk−1

(�G) H(u, 0)
=

1∑
u∈V H(u, k − 1)

.

(15)

Since the number of k-color paths in G is equal to∑
u∈V H(u, k − 1), each k-color path is sampled uniformly.�
We analyze the time and space complexity of Algorithm 5 in

the following theorem.
Theorem 10: Given an input graph G with n nodes and m

edges, Algorithm 5 takes O(χnk +m) time and uses O(kn+
m) space, where χ is the maximum color value.

Proof: First, the algorithm consumes O(m+ n) time to ob-
tain a DAG. Second, as above analyzed, the DPPathCount proce-
dure takes O(nkχ) time. Third, the DPPathSamplingprocedure
uses O(n+ χk) time. This is because setting the probability
distribution for the first node takesO(n) time, while for the other
nodes it takes at mostO(χ) time. Thus, the total time complexity
of Algorithm 5 is O(χnk +m). For the space complexity, the
algorithm needs to store the DAG and the DP table H which
uses O(nk +m) space in total.�

B. Estimating the k-Clique Counts

Based on Algorithm 5, we can devise a weighted sampling
algorithm to construct an unbiased estimator to compute the
number of k-cliques. Specifically, we can slightly modify Al-
gorithm 4 by (1) replacing the DPCountprocedure in line 4 of
Algorithm 4 with the DPPathCount procedure, and (2) replacing
DPSampling in line 10 of Algorithm 4 with DPPathSampling.
Due to the space limit, we omit the details of this modified
algorithm. Similar to Theorems 4 and 5, the estimator based on
the k-color path sampling is also unbiased, and the sample size
can also be bounded by using the Chernoff bound. Moreover,
it is easy to check that the sample size is no larger than that of
Algorithm 4, because ρp ≥ ρc.

For the time complexity, such a modified algorithm takes
O(|S|δ2 k) to compute the DP tables (i.e., H) for all nodes in
S (because the input graph G(Nv(�G)) for the DPPathCount
procedure has at most δ nodes), and consumes O(δk + k2) to
sample a k-color path. Thus, the total time complexity of the al-
gorithm isO(|S|δ2k + (δk + k2)t+m+ n), whereO(m+ n)
is taken for computing the graph coloring. The space overhead
of the modified algorithm is O(m+ n+ δk), because the DP
table takes O(δk) space.

VI. COLORFUL TRIANGLE-PATH SAMPLING

Note that k-color paths can significantly remove the un-
promising k-color sets by introducing a connective constraint
(i.e., a k-color set must form a path). However, the k-color path
is still a very sparse structure, which does not fully capture
the clique property. Specifically, k-color path only guarantees
the existence of k − 1 edges, which is the smallest number of
edges to maintain the connectivity. In this section, we further
develop a new technique, called k-triangle path, to prune those
unpromising k-color paths that are not the k-cliques. In a simple
path, any two consecutive nodes form a 2-clique. Similarly,
we define the concept of triangle-path. In a triangle-path, any
three consecutive vertices form a triangle. When the nodes of
a triangle-path have distinct colors, the triangle-path is called a
colorful triangle-path. In the following, we use k-triangle path
to refer to a colorful triangle-path with k nodes.

The k-triangle path can capture the clique property better
than k-color path, which can further improve the clique density.
However, compared to k-color path, k-triangle path is a more
complex structure. It is nontrivial to design efficient algorithms
for uniformly sampling k-triangle paths. Below, we propose a
new DP algorithm to achieve this goal.

A. DP-Based k-Triangle Sampling

As described in Section V-A, we assume that the graph G
is colored with the color values selected from [1, χ]. We can
construct a DAG �G based on the color ordering. Below, we
formally define the concept of k-triangle path.

Definition 2: A k-triangle path is a k-color set with vertices
{v1, v2, v3, . . ., vk} where c(vi) < c(vi+1) for all i ∈ [1, k − 1]
and vi, vi+1, vi+2 form a triangle for all i ∈ [1, k − 2].

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

1528 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Let �G be the DAG generated by the color ordering. Counting
the colorful triangle-paths in G is equivalent to counting the
triangle-paths in �G. Then, any k-clique C = {v1, v2, . . . , vk} in
G is a k-triangle path in �G. As described in Section V-A, the set
of k-color paths is a subset of the set of k-color sets. Similarly,
the set of k-triangle paths is a subset of k-color paths. Thus, the
k-clique density over the k-triangle paths, denoted by ρt, must
be no less than the k-clique density over the k-color paths.

Example 3: In Fig. 1(d), the two 4-color paths in the box are
k-triangle paths. For example, in the 4-color path {0, 1, 5, 6},
both {0, 1, 5} and {1, 5, 6} are triangles. However, in the 4-color
path {0, 2, 3, 6}, the three consecutive nodes {2, 3, 6} do not
form a triangle, thus {0, 2, 3, 6} is not a k-triangle path.

Counting the number of k-triangle path: Denote by
T ((vx, vy), j) the number of j-triangle-paths with (vx, vy) as
the first edge. Then, the total number of k-color paths of �G, de-
noted by cntk(G, triangle), can be computed by the following
formula:

cntk(G, triangle) =
∑

(vi,vj)∈�G

T ((vi, vj), k). (16)

Let �Gvi
be a subgraph of �G induced by {vi, . . . , vn}. Since

the node vx in �Gvx
only has out-neighbors, other nodes in the

k-triangle paths are in �Gvx
. Denote by vz the third node in a

j-triangle-path. It is easy to see that vz is the common neighbor
of vx and vy, because the three consecutive nodes in a k-triangle
paths must form a triangle. Based on this property, we can derive
the following equation:

T ((vx, vy), j) =
∑

vz∈Nvx (
�Gvx)∩Nvy (

�Gvy)

T ((vy, vz), j − 1).

(17)
Initially, we have

T ((vx, vy), 2) = 1, ∀(vx, vy) ∈ E. (18)

Based on these equations, we can easily devise a DP algorithm
to compute cntk(G, triangle). The detailed implementation of
this DP algorithm is shown in the TriPathCount procedure of
Algorithm 6 (lines 5-11). Specifically, Line 6 initializes the DP
table based on (18), and lines 7-10 is the DP procedure based
on (17).

Sampling a uniform k-triangle path: Similar to the algorithm
to uniformly sample the k-color paths, we propose a DP-based
sampling algorithm to uniformly draw k-triangle paths. Suppose
that there is a randomly selected k-triangle path, denoted by
P . With (16), we can derive that the probability of P starting
by edge (vx, vy) is T ((vx,vy),k)

cntk(G,triangle) . Then for the third node
vz in P , it must be the common out-neighbor of vx and vy .
According to (17), the number of k-triangle paths with (vx, vy)
as the first edge is equal to the sum of (k − 1)-triangle paths
with (vy, vz) as the first edge, thus the probability of vz being

sampled is T ((vy,vz),k−1)
T ((vx,vy),k−2) . Similar mechanism can be applied to

sample the next nodes. The detailed implementation is shown in
Algorithm 6.

Algorithm 6 first constructs a DAG �G by the color ordering
(line 1). Then, the algorithm invokes TriPathCount to derive the

Algorithm 6: DPTriSampler(G, k).

DP table T and calls the DPTriSampling procedure to uniformly
sample a k-color path (line 3). Based on (17), DPTriSampling
sets a probability distribution D over the set of edges (line 13)
and samples the first two nodes vx and vy according to D
(lines 14-15). With the first two nodes, the set of the third nodes
is the common out-neighbors of vx and vy (line 15). Then,
DPTriSampling samples the next node fromQ by setting a prob-
ability distribution over Q (lines 17-20). The DPTriSampling
procedure terminates when k nodes are sampled.

A k-triangle path can always be obtained by Algorithm 6 if the
DAG �G contains at least one k-triangle path. This is because in
lines 17-20, if a node vz is sampled, then T ((vy, vz), k − i+ 2)
must be larger than 0, indicating that the common out-neighbor
of vy and vz must be non-empty (line 21). As a consequence,
the for loop in line 16 of Algorithm 6 will be executed k − 2
times which results in a k-triangle path. The following theorem
shows that Algorithm 6 can obtain a uniform k-color path.

Theorem 11: Algorithm 6 outputs a uniform k-triangle path.
Proof: Consider a path {v1, v2, . . . , vk}. Let X be the

event of this path being sampled by Algorithm 6. Denote
by Yi the event of two nodes vi−1 and vi appearing in the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

YE et al.: EFFICIENT k-CLIQUE COUNTING ON LARGE GRAPHS: THE POWER OF COLOR-BASED SAMPLING APPROACHES 1529

path. Clearly, the probability of the first two nodes v1 and
v2 being sampled is Pr(Y1) =

T ((v1,v2),k)∑
e∈E T (e,k) . Observe that

in the ith-iteration of the for loop (line 16), the nodes in
Q are the common out-neighbor of vi−1 and vi−2. Thus,
the event that a node vi is sampled in the ith for loop can
be represented as Yi|Yi−1 (conditioned on Yi−1). We have
Pr(Yi|Yi−1) =

T ((vi−1,vi),k−i+2)∑
u∈Nvi−1 (�Gvi−1)∩Nvi−2 (�Gvi−2) T ((vi−1,u),k−i+2) =

T ((vi−1,vi),k−i+2)
T ((vi−2,vi−1),k−i+3) . As a result, we have

Pr(X) = Pr(Y2)× Pr(Y3|Y2)× · · · × Pr(Yk|Yk−1)

=
T ((v1, v2), k)∑

e∈E T (e, k)
× T ((v2, v3), k − 1)

T ((v1, v2), k)
×

· · · × T ((vk−1, vk), 2)

T ((vk−2, vk−1), 3)

=
1∑

e∈E T (e, k)
. (19)

Since the number of k-triangle paths in G is equal to∑
e∈E T (e, k), each k-triangle path is sampled uniformly.�
Example 4: Let k = 4. In Fig. 1(a), there are two k-triangle

paths {0, 1, 5, 6} and {0, 2, 3, 4}. We have T ((0, 1), 4) = 1,
which means the count of k-triangle paths with head (0,1) is
1. So the probability of (0,1) being sampled as the first two
vertices is T ((0,1),4)

2 = 1
2 (line 13 of Algorithm 6). The set of

common neighbors of 0 and 1 is {5}. Thus the probability of
5 being sampled as the third vertex is 1. Similarly, the set of
common neighbors of 1 and 5 is {6}, and the probability of
6 being sampled is 1. At last, the probability of {0, 1, 5, 6}
being sampled is 1

2 × 1× 1 = 1
2 . The probability of {0, 2, 3, 4}

is also 1
2 . Therefore, the probability of each k-triangle path being

sampled is equal.
Remark: Note that for all our algorithms, the clique density

is a fixed value of a network. For example, for the k-triangle
path sampling algorithm, the clique density is determined by
the count of the cliques among the k-triangle paths. Reconsider
the graph in Fig. 1(a), there is a 4-clique {0, 2, 3, 4} in the two
triangle paths {0, 2, 3, 4}, {0, 1, 5, 6}, and the clique density is
0.5.

We analyze the time and space complexity of Algorithm 6 in
the following theorem.

Theorem 12: The procedure TriPathCount in Algorithm 6
takes O(k�) time and uses O(km) space, where � is the
number of triangles of the input graph. The procedure DP-
TriSampling in Algorithm 6 takes O(m+ χk) time.

Proof: It is easy to see that the total time costs of Line 8
and Line 9 in Algorithm 6 is bounded by O(�). Thus, the Tri-
PathCount procedure takes at most O(k�) time. For the space
complexity, the algorithm needs to store the DP table T which
uses O(mk) space. In DPTriSampling, setting the probability
distribution for the first two nodes takes O(m) time (line 13),
while for the other nodes it takes at most O(χ) time. Thus, the
total time complexity of DPTriSampling is O(m+ χk).�

Fig. 2. Comparing ρc, ρp, and ρt for different k.

B. Estimating the k-Clique Counts

Similar to Sections IV-B and V-B, we can construct an
unbiased k-clique estimator based on Algorithm 4 and Algo-
rithm 6. Since the estimator is very similar to those shown in
Sections IV-B and V-B, we omit the details for brevity.

For the time complexity, such a modified algorithm takes
O(�Sk) to compute the DP tables (i.e., the DP table T in
Algorithm 6) for all nodes in S where �S is the sum of
the number of triangle in the dense region S. It also con-
sumes O(χk + k2) to sample only one k-triangle path, where
O(k2) is the time to check whether the sampled k nodes is a
k-clique. Thus, the total time complexity of the algorithm is
O(�Sk + (χk + k2)t+m+ n), where O(m+ n) is taken for
computing the graph coloring. The space overhead of the mod-
ified algorithm is O(δ2 k), because the DP table takes O(m′k)
space where m′ is the maximum number of edges for �Gv and it
must satisfy m′ ≤ δ2.

C. Discussion

In this subsection, we analyze the relationships among three
proposed algorithms and analyze in which case k-triangle paths
is better than k-color sets and k-color paths.

According to Theorem 5, the sample size needed to compute
an accurate estimate is 3

ρε2 ln 1
σ where ρ is the clique density and

ε, σ are small constant numbers. This bound is only determined
by the clique density. In other words, if the sample size is
fixed, the clique density is the only factor that has effect on
the accuracy. When ρ is very small, it needs quite a large size of
samples to achieve an accurate answer. All the Bernoulli-style
sampling algorithms have this property [34].

Denote by ρc, ρp, ρt the clique density over the k-color sets,
k-color paths, k-triangle paths, respectively. ρt is always the
largest one as described in the following. Since a k-triangle path
must be a k-color path and k-color path must be a k-color set, it is
easy to derive that the set of k-triangle paths is a subset of k-color
paths and the set of k-color paths is a subset of k-color sets. Thus
it has ρt ≥ ρp ≥ ρc. For example, in Fig. 1(a), whenk = 4, it has
ρc =

1
8 , ρp = 1

3 , ρt =
1
2 (as shown in Fig. 1(b) and (d)). Table II

in experiment further shows the relationship. We also plot the
change tendency of ρc, ρp and ρt on two representative datasets,
Stanford and Orkut, in Fig. 2. In Fig. 2, ρt is the most largest
and robust when k becomes large. Thus the estimator based on
the k-triangle paths needs smaller sample size.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

1530 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Algorithm 7: The Adaptive Sampling Framework.

However, smaller sample size does not mean less running
time. According to Theorem 6, the proposed sampling based
algorithms are composed of two steps. The first step is the
computation of dynamic programming table. The second step
is sampling t samples according to the distribution defined
by the dynamic programming table. Since k-triangle path is a
more complex structure than DPColor and DPColorPath, the
computation of dynamic programming needs more running time,
as described in Theorem 3, 10 and 12. Thus k-triangle path
is better than k-color set and k-color path when ρp and ρc is
quite smaller than ρt. As shown in Fig. 2, this happens when k
becomes large on real-world networks.

VII. ADAPTIVELY DETERMINING THE SAMPLE SIZE

In Algorithm 2, it needs to set the sample size t as a fixed
value. The advantage of a fixed sample size is that the running
time can be controlled by the parameter t. However, there is no
confirmation that the results given by Algorithm 2 are accurate.
To overcome this problem, we provide a new framework that
can guarantee the accuracy.

The key idea of the new framework is based on the concept that
an estimate is accurate if the number of cliques in the samples
exceeds a threshold. We set the threshold as 3

ε2 ln 1
σ according to

Theorem 13. Theorem 13 explains the idea more clearly.
Theorem 13: Suppose that the sample size is t and the

number of k-cliques in the t sample size is c. ρ̂ = c
t is a 1− ε

approximation of ρ with probability 1− 2σ if c ≥ 3
ε2 ln 1

σ .
Proof: Since c = ρ̂t, it has t ≥ 3

ρ̂ε2 ln 1
σ . Then the theorem

can be proved by Theorem 5. �
Theorem 13 describes that ρ̂ is accurate only if c is large

enough, regardless of the value of t. Based on this idea, we
design a new framework that keeps sampling until c is larger than
the threshold. In the new framework, we utilize the Adaptive
Sampling to adapt the sample size according to the existing
sampling results. If there are C cliques in T samples already
and we needs threshold cliques in total, the following sample
size should be threshold/C × T .

The details of the new framework is shown in Algorithm 7.
Algorithm 7 inputs an error bound ε and returns a (1− ε)-
approximation. At first, it samples 103 samples to test the clique
density (line 2). If no clique is sampled, use more samples to
test the clique density (line 10). If there exists cliques in the
T samples, adjust the count of samples accordingly (line 9).
The adjusting method in line 9 is a simple yet effective way
to make the value of C approaching the threshold. At last, the
approximation is returned (line 11).

Instead of time complexity, we analyze the upper bound of the
sampling times of Algorithm 7, i.e. the value ofT in Algorithm 7,
which is the key to the running time. We omit the proof because
it is quite clear.

Theorem 14: The sampling times of Algorithm 7 is
O(max(104, 3

ρε2 ln 1
σ)).

The advantage of the new framework is that it can guarantee
the accuracy of the results. The disadvantage is that the time
complexity of our algorithm depends on the clique density.
Therefore, when k is large (e.g., k > 25), the clique density
might be extremely small, resulting in that the algorithm requires
a large number of samples to achieve a good accuracy guarantee.
In this case, the algorithm may be costly to obtain a good
approximation. Fortunately, for real-world applications, k is
often not very large (e.g., k < 20), our algorithm is very efficient
and extremely fast in practice as shown in our experiments. In
fact, in subgraph counting field, there are no existing algorithms
that have both polynomial time complexity and strong accuracy
guarantee [35].

Example 5: To aid understanding, we describe how the
adaptive sampling framework works on the Orkut network with
ε = 0.05, δ = 0.01 and DPPathSampler. The threshold in line 3
is 5519. The real clique density is 0.0132. At first, the framework
samples 104 times and get 91 cliques. Now the estimated density
is 0.0091 and the error is 0.0132−0.0091

0.0132 = 0.31, which is larger
than ε. According to the adaptive sampling method, to let the
count of the sampled cliques larger than threshold, we need
threshold/C × T = 606483 more samples (line 9). After sam-
pling, there are 7837 cliques in the 606483 samples. Now there
are C = 7837 + 91 cliques among the T = 606483 + 10000
samples, and the estimated clique density is 0.0129. The error
is 0.0132−0.0129

0.0132 = 0.02, which is smaller than ε.

VIII. EXPERIMENTS

A. Experimental Setup

We compare the proposed algorithms with three state-of-the-
art k-clique counting algorithms which are kClist [15], [16],
PIVOTER [17], TuranShadow [20]. The kClist algorithm is an
exact k-clique counting algorithm which is based on k-clique
enumeration [15]. Note that the original kClist algorithm is
based on the degeneracy ordering. Li et al. [16] proposed an
improved version based on a hybrid of the degeneracy and color
ordering. In our experiment, kClist denotes such an improved
version. PIVOTER and TuranShadow are the state-of-the-art ex-
act and approximate k-clique counting algorithms respectively.
Both PIVOTER and TuranShadow were proposed by Jain and

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

YE et al.: EFFICIENT k-CLIQUE COUNTING ON LARGE GRAPHS: THE POWER OF COLOR-BASED SAMPLING APPROACHES 1531

Fig. 3. Running time of different algorithms (the relative errors for PEANUTS, DPColor, DPColorPath and DPTriPath are set to 0.1%).

TABLE I
DATASETS

Seshadhri [17], [20]. PEANUTS [27] is an improved version
of TuranShadow which is more efficient than TuranShadow,
thus we use PEANUTS as the baseline instead of TuranShadow.
The C++ codes of all these algorithms are publicly available,
thus we use their implementations in our experiments. For our
algorithms, we implement DPColor, DPColorPathand DPTri-
Path. The three algorithm are Algorithm 2 integrated with three
sampling algorithms. All of them are implemented in C++. All
algorithms are evaluated on a PC with two 2.1 GHz Xeon CPUs
(16 cores in total) and 128 GB memory running CentOS 7.6.

Datasets: We use 8 large real-life datasets in our experiments.
Table I summarizes the detailed statistic information of all
datasets. The last column of Table I denotes the degeneracy
of the graph. Stanfordand Google are web networks. DBLP
is a co-authorship network, and Skitter is an internet graph.
Themaker, Orkut, LiveJournal, and Friendster are social net-
works. All datasets are downloaded from (snap.stanford.edu)
and (https://networkrepository.com/networks.php).

B. Experimental Results

Exp 1. Runtime of different algorithms: In this experiment, we
compare the running time of different algorithms on all datasets.
Note that for each approximation algorithm (PEANUTS, DP-
Color, DPColorPathand DPTriPath), we record its running time
when the algorithm achieves a 0.1% relative error. Here the
relative error is computed by |f − f̂ |/f , in which f is the exact

TABLE II
k-CLIQUE DENSITIES (ρc/ρp/ρt) IN THE DENSE REGIONS (%)

k-clique count and f̂ is the estimated count. For all algorithms,
if they cannot terminate within 5 hours, we set their running time
to “INF”. Fig. 3 shows the running time of various algorithms.

We first compare our algorithms with kClist and PIVOTER.
As can be seen, all of our algorithms DPColor, DPColorPath and
DPTriPath are significantly faster than kClist and PIVOTER on
most datasets with varying k. The kClist algorithm is generally
intractable for largek on all datasets. On most datasets, DPColor-
Path is around one order of magnitude faster than PIVOTER. The
hardest instance is the LiveJournal graph, on which PIVOTER
only obtains the number of 4-cliques within 5 hours, whereas
DPColorPath takes around 20 seconds to achieve a 0.1% relative
error (DPColorPath can achieve at least three orders of mag-
nitude faster than PIVOTER on LiveJournal). Note that since
both kClist and PIVOTER are intractable on LiveJournal when
k ≥ 6, we use the exactk-clique count obtained from [36], where
k ≤ 8, to compute the relative errors for the approximation
algorithms. Moreover, as reported in [36], the running time
of such a GPU-parallelized PIVOTER algorithm using 5120
CUDA Cores is 6,851 seconds for k = 8, while our sequential
DPColorPath(DPColor) take around 20 seconds to obtain a very
accurate k-clique count. On Orkut and LiveJournal, the exact
algorithm PIVOTER is faster than DPColor. This is because
the clique density over DPColor is almost zero in Orkut and
Friendster, as shown in Table II. According to Theorem 5, it
needs a large number of samples to guarantee the accuracy when

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

https://networkrepository.com/networks.php

1532 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Fig. 4. Relative errors with varying sample size (k = 8).

the clique density is small. The results happens on the datasets
that have very small cliques density. These experiment results
indicate that our algorithms are extremely efficient for k-clique
counting.

By comparing our algorithms with PEANUTS, we can see that
DPColor, DPColorPath and DPTriPath are all consistently faster
than PEANUTS on all datasets with varying k. On most datasets,
DPColorPath is orders of magnitude faster than PEANUTS.
For example, on DBLP, DPColor, DPColorPath and DPTriPath
all take around 0.1 s, while PEANUTS consumes more than 1
seconds for most k values. In addition, on Orkut and Friendster,
PEANUTS and DPColor cannot achieve a desired relative error
within 5 hours for large k values, while DPColorPath and
DPTriPath are still very efficient on these two datasets. For
our algorithms, both DPColorPath and DPTriPath are generally
faster than DPColor on large graphs. Moreover, the performance
of DPColorPathand DPTriPathis much more stable than DP-
Color on all datasets. Additionally, we can also see that in
the graph Themaker and Friendster, DPTriPath is faster than
DPColorPath. The reason is that DPTriPath can achieve a much
higher clique density than DPColorPath, thus it needs much less
samples to achieve 0.1% relative error. Although the complexity
of DPTriPath is higher than DPColorPath to draw a sample, it
needs much less samples, thus it can be faster than DPColorPath.
These results confirm our theoretic analysis in Sections IV, V
and VI.

Exp 2. Relative errors with varying sample size: Fig. 4 shows
the relative errors of three algorithms with varying sample
size on Stanford and LiveJournal. Similar results can also be
observed on the other datasets. As shown in Fig. 4, the rel-
ative error of DPColorPath is lower than those of DPColor
and PEANUTSon most cases, and DPTriPath is further lower
than DPColorPath. When the sample size is 108, the relative
error of DPColorPath is slightly larger than those of DPColoron
LiveJournal. This is because the sample size is large enough
to let the relative error of both the DPColorPath and DPColor
be around 10−5. In general, the relative errors of all algorithms
decrease with the sample size increases. Moreover, we can see
that both DPColorPath and DPTriPath obtain a 10−5 relative
error on all datasets when the sample size is 108, indicating that
DPColorPath and DPTriPath can achieve very high accuracy
using a reasonable number of samples. These results further
confirm the efficiency and effectiveness of our techniques.

Exp 3. Performance of different algorithms for a large k:
In this experiment, we evaluate the performance of different

Fig. 5. Performance on Orkut when k is large.

Fig. 6. Memory usage of various algorithms (k = 8).

sampling algorithms for a large k. We set the sample size as
5× 107 on Orkut for all algorithms in Fig. 5(a). As can be seen,
the error rates of all algorithms increase as k increases. DPColor
and PEANUTS cannot obtain accurate and valid results for
large k. Only DPTriPath can constantly achieve a relative error
below 10% for large k. And DPTriPath consistently outperforms
DPColorPath in at least one order of magnitude. This is because
DPTriPath is more powerful to capture the clique property than
DPColorPath, and the clique density over DPTriPath is larger
than DPColorPath. Fig. 5(b) compares the running time of the
algorithms to make the relative error below 10%. DPTriPath is
more robust than DPColorPath when k becomes large. These
results show the advantage of DPTriPath.

Exp 4. K-clique density: In this experiment, we evaluate the
k-clique densities over the k-color sets (ρc), the k-color paths
(ρp) and the k-triangle paths (ρt) in the dense regions of the
graph, respectively. The results on all datasets are reported in
Table II. As expected, ρc is lower than ρp, and ρp is lower than
ρt on all datasets. Moreover, all ρc, ρp and ρt can achieve a very
high value on most datasets. For example, on DBLP, all of them
are near to 100%. In general, they decrease with k increases.
Nevertheless, on most datasets, ρt is always very large even
when k = 15. These results further confirm that the proposed
techniques can achieve high accuracy on real-life graphs. Note
that in Fig. 3(f) and (h), the exact algorithm PIVOTER is faster
than the proposed DPColor algorithm. This is because the clique
density over k-color set is almost zero on Orkut and Friendster,
as shown in Table II. According to Theorem 5, it needs a large
number of samples to guarantee the 0.1% accuracy.

Exp 5. Memory overheads: Fig. 6 shows the memory usages
of various algorithms on Themaker and LiveJournal for k = 8.
The results for the other k values and datasets are consistent. As
expected, the space consumption of PEANUTS is significantly

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

YE et al.: EFFICIENT k-CLIQUE COUNTING ON LARGE GRAPHS: THE POWER OF COLOR-BASED SAMPLING APPROACHES 1533

TABLE III
RUNTIME OF OUR PARALLEL ALGORITHMS (k = 8, t = 5× 106, SEC.)

TABLE IV
RATIO OF THE k-CLIQUES IN THE SPARSE REGIONS

higher than the other algorithms, as it needs to store the partial
Tuŕan Shadow structure. The space overheads of our algorithms
and PIVOTER are comparable, while kClist consumes slightly
more space than our algorithms. These results demonstrate that
our algorithms are space efficient.

Exp 6. Parallel performance of our algorithms: In this exper-
iment, we evaluate the parallel performance of our algorithms.
To this end, we implement the parallel versions for DPColor,
DPColorPath and DPTriPath using OpenMP. We fix the sample
size as 5× 106 to evaluate the runtime on the two largest
datasets. The results are shown in Table III. As can be seen, all of
DPColor, DPColorPath and DPTriPath can achieve 12× ∼ 14×
speedups when using 16 threads. This result indicates a high
degree of parallelism of our algorithms.

Exp 7. The number of k-cliques in the sparse regions: In
this experiment, we evaluate the number of k-cliques in the
sparse regions of a graph on all datasets. Note that a node’s
neighborhood-induced subgraph is called a sparse region of a
graph if the average degree of such a subgraph is smaller than k.
Clearly, if the sparse regions have less number of k-cliques, the
PIVOTER algorithm should be more efficient. Table IV reports
our results on all datasets. As can be seen, for a relatively large k,
the number of k-cliques in the sparse regions of all datasets only
accounts for a small portion of the total number of k-cliques. On
most datasets, such a ratio usually does not exceed 0.1%. These
results indicate that the proposed framework, which integrates
both PIVOTER and sampling techniques, can be very efficient
for handling real-life graphs.

Exp 8. Maximum clique size in the sparse regions: Table V
shows the maximum clique size, the maximum degeneracy
among the subgraphs, i.e. max δv where δv is the degeneracy

of the subgraph G(Nv(�G)) and the value of 	
√

kα+ 1
2
 on

the sparse regions of the graph (Theorem 1). Recall that the
PIVOTER algorithm is based on the enumeration of maximal

TABLE V
MAXIMUM CLIQUE SIZE/ max δv / 	

√
kα+ 1

2
 OF THE SPARSE REGIONS OF

DIFFERENT GRAPHS

cliques, thus the maximum clique size bounds the recursion
depth of PIVOTER. From Table V, we can observe that the
maximum clique in the sparse region of each graph is relatively
small compared with the degeneracy δ of the entire graph,
where the degeneracy value is the upper bound of the maximum
clique size. Moreover, the max δv is much smaller than δ and

	
√
kα+ 1

2
 is also not very large, which further indicates the
high effectiveness of the proposed solution.

Exp 9. Test different values of threshold to split network:
Table VI shows the performance of DPColor, DPColorPath
and DPTriPath on different values of threshold to split the
networks. In Table VI, the total running time increases and
the relative error decreases on most cases as the threshold
increases. For example, on Orkut, the total running time of
DPTriPath is 239.8 s, 251.5 s, 310.6 s and the relative error is
0.25%, 0.20%, 0.20% for the thresholds of 0.5 k, k, 2 k respec-
tively. However, the results under different values of threshold
differs no more than an order of magnitude. According to these
results, we can conclude that our algorithm is not very sensitive
to the threshold value.

Exp 10. Results with adaptive sample size: Table VII shows
the performance of Algorithm 7 over different density. The value
of δ is set as 0.01. In Table VII, the columns are (1) clique density,
(2) the sampler, the value of k and the network, (3) the value of
error bound ε in Algorithm 7, (4) the total sample size, i.e. the
value ofT in Algorithm 7, and (5) the estimate error. As shown in
Table VII, no matter what the value of density, the estimate error
is consistently smaller than the given expected error bound ε. The
value of T tends to becomes larger when the clique density and
the error bound ε becomes smaller. These results are consistent
with Theorem 13, which confirms that Algorithm 7 can achieve
a good accuracy guarantee.

Table VIII shows the running time of DPColor, DPColorPath
and DPTriPath equipped with Algorithm 7 when k = 24. The
”INF” means that the adaptive sample size exceeds 1010. In
Table VIII, DPColor and DPColorPath are faster than DPTriPath
on Stanfordand LiveJournal, and slower on Skitter and Orkut.
This is because the clique density differs on these datasets. In
Table VIII, ρt is much larger than ρc and ρp on Skitter and Orkut,
and they are similar on Stanford and LiveJournal. For example, it
has ρc = 0.00002, ρp = 0.001, ρt = 0.005 on Skitter and ρc =
0.37, ρp = 0.46, ρt = 0.88 on Stanford. These results further
confirm the analysis in Section VI-C.

IX. FURTHER RELATED WORK

K-clique and triangle counting: Except the practical algo-
rithms introduced above, there also exist some theoretical studies

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

1534 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

TABLE VI
AFFECT OF DIFFERENT THRESHOLD TO SPLIT NETWORK. (k = 8, t = 5× 106)

TABLE VII
PERFORMANCE OF THE ADAPTIVE SAMPLING TECHNIQUE IN ALGORITHM 7

FOR VARIOUS DENSITY (δ = 0.01)

TABLE VIII
COMPARE THE RUNNING TIME OF DPCOLOR, DPCOLORPATH,
DPTRIPATHWITH ADAPTIVE SAMPLE SIZE (δ = 0.01, k = 24)

on the k-clique counting problem [37], [38], [39], [40]. Most of
these theoretical work focus mainly on devising an algorithm
to achieve a better worst-case time complexity. The practical
performance of such algorithms is often much worse than the
state-of-the-art practical algorithms [16]. Triangle is a specific
k-clique for k = 3. The problem of counting triangles in a
graph has a long history. There are many algorithms in the

literature [31], [41], [42], [43], [44]. For example, both [41]
and [42] are ordering-based exact triangle counting algorithms.
Chu and Cheng [43] developed an I/O-efficient algorithm exact
algorithm for triangle listing. Tsourakakis et al. [31] proposed an
edge sampling algorithm to approximate the number of triangles
in a graph. Becchetti et al. [44] presented an approximate triangle
counting algorithm in the semi-streaming model. Tom et al.
[45] and Hu et al. [46] developed efficient GPU-parallel algo-
rithms for triangle counting in the shared-memory many-core
platforms.

Motif counting: Many exact and sampling-based approxima-
tion algorithms have been proposed for motif counting [18],
[23], [26], [35], [47], [48]; and some of them can also be used to
count k-cliques. Notable example include the color coding based
algorithms [23], [26], and edge sampling based algorithms [18].
However, as shown in [20], all these algorithms cannot scale for
large graphs and also their practical performance is worse than
TuranShadow.

X. CONCLUSION

In this paper, we propose a time and space efficient framework
for k-clique counting. Our framework first divides the graph into
sparse and dense regions based on the average degree. Then,
for the sparse regions, we use the state-of-the-art PIVOTER
algorithm to compute the exact number of k-cliques. For the
dense regions, we develop three novel DP-based k-color set,
k-color path, and k-triangle path sampling techniques to esti-
mate the k-clique count, respectively. Extensive experiments on
8 real-life graphs show that our algorithms are very efficient
and accurate and also use less space than the state-of-the-art
algorithms.

REFERENCES

[1] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon,
“Network motifs: Simple building blocks of complex networks,” Science,
vol. 298, no. 5594, pp. 763–764, 2010.

[2] S. R. Burt, “Structural holes and good ideas,” Amer. J. Sociol., vol. 110,
no. 2, pp. 349–399, 2004.

[3] K. Faust, “A puzzle concerning triads in social networks: Graph constraints
and the triad census,” Soc. Netw., vol. 32, no. 3, pp. 221–233, 2010.

[4] N. Przulj, D. G. Corneil, and I. Jurisica, “Modeling interactome: Scale-free
or geometric?,” Bioinformatics, vol. 20, no. 18, pp. 3508–3515, 2004.

[5] C. Seshadhri and S. Tirthapura, “Scalable subgraph counting: The meth-
ods behind the madness,” in Proc. Int. Conf. World Wide Web, 2019,
pp. 1317–1318.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

YE et al.: EFFICIENT k-CLIQUE COUNTING ON LARGE GRAPHS: THE POWER OF COLOR-BASED SAMPLING APPROACHES 1535

[6] J. W. Berry, B. Hendrickson, R. A. Laviolette, and C. A. Phillips, “Tol-
erating the community detection resolution limit with edge weighting,”
Phys. Rev. E. Stat. Nonlinear Soft Matter Phys., vol. 83, no. 5, 2011,
Art. no. 056119.

[7] B. Sun, M. Danisch, T. H. Chan, and M. Sozio, “KClist : A simple algorithm
for finding k-clique densest subgraphs in large graphs,” in Proc. VLDB
Endowment, vol. 13, no. 10, pp. 1628–1640, 2020.

[8] C. E. Tsourakakis, “The k-clique densest subgraph problem,” in Proc. Int.
Conf. World Wide Web, 2015, pp. 1122–1132.

[9] A. E. Sariyüce, C. Seshadhri, A. Pinar, and Ü. V. Çatalyürek, “Finding the
hierarchy of dense subgraphs using nucleus decompositions,” in Proc. Int.
Conf. World Wide Web, 2015, pp. 927–937.

[10] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization
of complex networks,” Science, vol. 353, no. 6295, pp. 163–166, 2016.

[11] H. Yin, A. R. Benson, and J. Leskovec, “Higher-order clustering in
networks,” Phys. Rev. E, vol. 97, no. 5, 2017, Art. no. 052306.

[12] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms,”
SIAM J. Comput., vol. 14, no. 1, pp. 210–223, 1985.

[13] I. Finocchi, M. Finocchi, and E. G. Fusco, “Clique counting in MapRe-
duce: Algorithms and experiments,” ACM J. Exp. Algorithmics, vol. 20,
pp. 1.7:1–1.7: 20, 2015.

[14] K. Makino and T. Uno, “New algorithms for enumerating all maxi-
mal cliques,” in Proc. 9th Scand. Workshop Algorithm Theory, 2004,
pp. 260–272.

[15] M. Danisch, O. Balalau, and M. Sozio, “Listing k-cliques in sparse real-
world graphs,” in Proc. Int. Conf. World Wide Web, 2018, pp. 589–598.

[16] R. Li, S. Gao, L. Qin, G. Wang, W. Yang, and J. X. Yu, “Ordering
heuristics for k-clique listing,” in Proc. VLDB Endowment, vol. 13, no. 11,
pp. 2536–2548, 2020.

[17] S. Jain and C. Seshadhri, “The power of pivoting for exact clique counting,”
in Proc. ACM Int. Conf. Web Search Data Mining, 2020, pp. 268–276.

[18] M. Rahman, M. A. Bhuiyan, and M. A. Hasan, “Graft: An efficient graphlet
counting method for large graph analysis,” IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 10, pp. 2466–2478, Oct. 2014.

[19] N. Alon, R. Yuster, and U. Zwick, “Color-coding: A new method for find-
ing simple paths, cycles and other small subgraphs within large graphs,”
in Proc. 26th Annu. ACM Symp. Theory Comput., 1994, pp. 326–335.

[20] S. Jain and C. Seshadhri, “A fast and provable method for estimating clique
counts using Turán’s theorem,” in Proc. Int. Conf. World Wide Web, 2017,
pp. 441–449.

[21] D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering and
graph coloring algorithms,” J. ACM, vol. 30, no. 3, pp. 417–427, 1983.

[22] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time complexity
for generating all maximal cliques and computational experiments,” Theor.
Comput. Sci., vol. 363, no. 1, pp. 28–42, 2006.

[23] M. Bressan, S. Leucci, and A. Panconesi, “Motivo: Fast motif counting via
succinct color coding and adaptive sampling,” in Proc. VLDB Endowment,
vol. 12, no. 11, pp. 1651–1663, 2019.

[24] M. Jha, C. Seshadhri, and A. Pinar, “Path sampling: A fast and provable
method for estimating 4-vertex subgraph counts,” in Proc. Int. Conf. World
Wide Web, 2015, pp. 495–505.

[25] P. Wang et al., “MOSS-5: A fast method of approximating counts of 5-node
graphlets in large graphs,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 1,
pp. 73–86, Jan. 2018.

[26] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi, “Motif
counting beyond five nodes,” ACM Trans. Knowl. Discov. Data, vol. 12,
no. 4, pp. 48:1–48:25, 2018.

[27] S. Jain and C. Seshadhri, “Provably and efficiently approximating near-
cliques using the turán shadow: PEANUTS,” in Proc. Web Conf., Taipei,
Taiwan, 2020, pp. 1966–1976.

[28] B. Balasundaram and S. Butenko, “Graph domination, coloring and cliques
in telecommunications,” in Handbook of Optimization in Telecommunica-
tions. Berlin, Germany: Springer, 2006, pp. 865–890.

[29] L. Chang and L. Qin, “Cohesive subgraph computation over large sparse
graphs,” in Proc. IEEE Int. Conf. Data Eng., 2019, pp. 2068–2071.

[30] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores decomposi-
tion of networks,” 2003, arXiv:cs/0310049.

[31] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “DOULION:
Counting triangles in massive graphs with a coin,” in Proc. ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2009, pp. 837–846.

[32] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering
heuristics for parallel graph coloring,” in Proc. 26th ACM Symp. Paral-
lelism Algorithms Architectures, 2014, pp. 166–177.

[33] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “Effective and efficient
dynamic graph coloring,” in Proc. VLDB Endowment, vol. 11, no. 3,
pp. 338–351, 2017.

[34] C.-E. Sarndal, B. Swensson, and J. Wretman, “Model assisted survey
sampling,” Springer Sci. Bus. Media, 2003.

[35] P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. M. A. Silva,
“A survey on subgraph counting: Concepts, algorithms, and applications
to network motifs and graphlets,” ACM Comput. Surveys, vol. 54, no. 2,
pp. 28:1–28:36, 2022.

[36] M. Almasri, I. E. Hajj, R. Nagi, J. Xiong, and W. Hwu, “Parallel K-
clique counting on GPUs,” in Proc. Int. Conf. Supercomputing, 2022,
pp. 21:1–21:14.

[37] T. Eden, D. Ron, and C. Seshadhri, ‘On approximating the number of
k-cliques in sublinear time,” in Proc. 50th Annu. ACM SIGACT Symp.
Theory Comput., 2018, pp. 722–734.

[38] T. Eden, D. Ron, and C. Seshadhri, “Faster sublinear approximation of
the number of k-cliques in low-arboricity graphs,” in Proc. Symp. Discrete
Algorithms, 2020, pp. 1467–1478.

[39] K. Censor-Hillel, Y. Chang, F. L. Gall, and D. Leitersdorf, “Tight dis-
tributed listing of cliques,” in Proc. Symp. Discrete Algorithms, 2021,
pp. 2878–2891.

[40] L. Gianinazzi, M. Besta, Y. Schaffner, and T. Hoefler, “Parallel algorithms
for finding large cliques in sparse graphs,” in Proc. 33rd ACM Symp.
Parallelism Algorithms Architectures, 2021, pp. 243–253.

[41] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theor, Comput. Sci., vol. 407, no. 1/3, pp. 458–473,
2008.

[42] M. Ortmann and U. Brandes, “Triangle listing algorithms: Back from the
diversion,” in Proc. 16th Workshop Algorithm Eng. Experiments, 2014,
pp. 1–8.

[43] S. Chu and J. Cheng, “Triangle listing in massive networks and its appli-
cations,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2011, pp. 672–680.

[44] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-streaming
algorithms for local triangle counting in massive graphs,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2008, pp. 16–24.

[45] A. S. Tom et al., “Exploring optimizations on shared-memory platforms
for parallel triangle counting algorithms,” in Proc. High Perform. Extreme
Comput. Conf., 2017, pp. 1–7.

[46] L. Hu, L. Zou, and Y. Liu, “Accelerating triangle counting on GPU,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2021, pp. 736–748.

[47] N. Pashanasangi and C. Seshadhri, “Efficiently counting vertex orbits of
all 5-vertex subgraphs, by EVOKE,” in Proc. ACM Int. Conf. Web Search
Data Mining, 2020, pp. 447–455.

[48] A. Pinar, C. Seshadhri, and V. Vishal, “ESCAPE: Efficiently counting
all 5-vertex subgraphs,” in Proc. Int. Conf. World Wide Web, 2017,
pp. 1431–1440.

Xiaowei Ye received the BE degree from Shandong
University, China, in 2021. He is currently working
toward the PhD degree with the Beijing Institute of
Technology (BIT), Beijing, China. His research in-
terests include subgraph counting, graph data mining
and social network analysis.

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong, in 2013. He is
currently a professor with the Beijing Institute of
Technology (BIT), Beijing, China. Before joining
BIT in 2018, he was an assistant professor with Shen-
zhen University. His research interests include graph
data management and mining, social network anal-
ysis, graph computation systems, and graph-based
machine learning.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

1536 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Qiangqiang Dai is currently working toward the
PhD degree with the Beijing Institute of Technology
(BIT), Beijing, China. His research interests include
graph data management and mining, social network
analysis, and graph computation systems.

Hongzhi Chen received the PhD degree from the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, in 2020. He is
currently a senior R.D. with ByteDance Infrastruc-
ture Team, Beijing, China, working on graph related
storage, processing and training systems. His research
interests cover the broad area of distributed systems
and databases, with special emphasis on graph sys-
tems and machine learning/deep learning systems.

Guoren Wang received the BS, MS, and PhD degrees
from the Department of Computer Science, North-
eastern University, China, in 1988, 1991, and 1996,
respectively. Currently, he is a professor with the
Beijing Institute of Technology (BIT), Beijing, China.
His research interests include graph data management
and mining, query processing and optimization, graph
computation systems.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 20,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

