2023 IEEE 39th International Conference on Data Engineering (ICDE) | 979-8-3503-2227-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICDES55515.2023.00386

2023 IEEE 39th International Conference on Data Engineering (ICDE)

Explainable Hyperlink Prediction:
A Hypergraph Edit Distance-Based Approach

Hongchao Qin*, Rong-Hua Li, Ye Yuan!, Guoren Wang!, Yongheng Dai#

Beijing Institute of Technology, China; *Diankeyun Technologies Co., Ltd, China
{hcqin; rhli; yuan-ye; wanggr}@bit .edu.cn; toyhdai@l63.com

Abstract—Link prediction is a significant technique to generate
latent interactions for the applications of recommendation in
large graphs. As the interactions to be predicted often occur
among more than two objects, we pay attention to solving the
novel problem of predicting the interactions in hypergraphs.
Previous studies focus mainly on predicting binary relations; most
of those techniques cannot be directly applied to predict multiple
relations. In this work, we study the problem of edge prediction in
hypergraphs, where we use a concept, Hypergraph Edit Distance
(abbreviated as HGED), to measure the similarity of two nodes.
Based on HGED, we can record a Hypergraph Edit Path while
searching the optimal edit distance, thus this path enables to
explain why one node is similar to another node since their
neighborhood structure can be edited to be isomorphic following
the edit path. We first propose a general framework which can
compute the edit distance of neighborhood structure for two
nodes in hypergraph. To improve the efficiency, we propose a BF'S
search-based method with several tightening lower bounds and
upper bounds estimation. To predict the multiple relations, we
introduce a cluster model in which nodes in each hyperedge are
restricted by the hypergraph edit distance. We further present an
on-demand algorithm for computing HGED, which substantially
avoids redundant computations. Finally, we conduct extensive
empirical studies on real hypergraph datasets, and the results
demonstrate the effectiveness, efficiency and scalability of our
algorithms.

I. INTRODUCTION

Link prediction aims at completing the missing links and
latent relationships in a graph, which is significant for the
applications of recommendation systems in graph-modeled
data structure, such as social networks, protein-protein in-
teraction networks and so on. Moreover, each edge in an
traditional graph represents a relation of two objects, such
that the existing studies on link prediction techniques focus on
predicting binary relations in the graph. However, consider the
co-operate relations in a research community, where authors
usually publish papers in groups of more than two. Therefore,
some information would be lost to represent such groups of
collaborators by just pairwise edges, and the existing binary
relation prediction techniques cannot be directly applied to
predict multiple relations. Fortunately, such multiple interac-
tions can be effectively captured by hyperedges, an extended
notion of edges that join an arbitrary number of entities. Such
a novel graph model which consists of nodes and hyperedges
is hypergraph, which has been widely studied recently. Below,
we introduce two cases to illustrate that the real-life multiple
relations cannot be easily modeled by a traditional graph, and

predicting the missing multiple interactions could be useful in
practical applications.

Mining Co-operate Relations in Hypergraph. In a co-
operate network, such as DBLP, most researches are done by
multiple researchers. Therefore, publications can be regarded
as hyperedges, and researchers are nodes in the hypergraph.
However, this multiple relation cannot be easily modeled by a
traditional graph. This is because that in the traditional graph,
the relation of co-operate can be modeled by a clique, and
if one author is removed from the clique, other authors will
still hold the relations. This contradicts the facts that each
publication requires the efforts of all authors, and without one
author the publication will not exist. As a consequence, the
real-life multiple relations should be modeled by hypergraphs.

Predicting the Expressed Gene in PPI Hypergraph. Genes
can acquire mutations in their sequence, leading to different
variants, known as alleles, in the population. These alleles
encode slightly different versions of a protein, which cause
different phenotypical traits. Therefore, genes take effects by
groups of protein, and slightly changes of protein will results
in the expressed of gene. In a protein-protein interaction
hypergraph, proteins and genes can be regarded as nodes and
hyperedges. Problems arise that can we predict new genes
by the existing recorded genes? Clearly, such a problem
can be solved by predicting hyperedges in a protein-protein
interaction hypergraph.

As discussed above, modeling and predicting hyperedges
could be useful for many practical applications. However, pre-
dicting hyperedges are significantly different from predicting
edges and it cannot be solved by the existing techniques,
since the edges in a traditional graph only include pairwise
connection which can be predicted by answering a verification
problem whether the similarity of pairwise nodes is larger than
a threshold. In addition, to solve the prediction problem, the
commonly-used solutions are to embed the nodes and edges
into vectors, and then invoke neural networks-based approach
to predict missing nodes or edges.

However, those machine learning based models are mostly
“black boxes” and can only output the similarity between two
nodes. They are not able to explain why two nodes are similar.
Therefore, an intuitive and explainable way is to capture the
structure features of the nodes and explain how one node
differs from the other. One possible solution is to use Jaccard
Similarity to model the similarity of two nodes, which capture

2375-026X/23/$31.00 ©2023 IEEE 245

DOI 10.1109/ICDE55515.2023.00386

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

the structural similarity between two nodes. However, this
method cannot be used to model the similarity of pairwise
node in hypergraph, since the neighborhood structure of one
node u in hypergraphs is much more complicated than in
traditional graphs. Therefore, to capture how one node differs
from the other, we need to characterize the similarity of two
sub-hypergraphs by an explainable method first. In this paper,
we propose a model which can predict multiple relations in
hypergraphs, and also can give an explanation for the reason
of getting such results. To the best of our knowledge, we are
the first to study the explainable link prediction problem in
hypergraphs.

Contributions. In this paper, we formulate and provide ef-
ficient solutions to predict edges in a hypergraph by an
explainable model. In particular, we make the following main
contributions.

(i) Novel Model. First, we propose a novel concept, called
Hypergraph Edit Distance(HGED), to characterize the simi-
larity of two sub-hypergraphs. Then, the node similarity of
nodes v and v is defined by the HGED of the neighborhood
structure (ego network) of uw and v. Next, we define a
new concept called (A, 7)-hyperedge, which denotes a set of
nodes that are similar to each other in terms of HGED with
parameters A and 7. All the Hypergraph Edit Distances are
accompanied with a Hypergraph Edit Path, such that we can
explain how can two nodes be similar and a (A, 7)-hyperedge
be formed.

(ii) New Algorithms. To calculate the HGED of two par-
ticular hypergraphs, the main technical challenge is how to
enumerate and check the final mapping of the nodes and
hyperedges. We propose a heuristic DFS-based framework to
compute HGED first, and then generate a bipartite graph to
get an accurate answer. Next, we propose an efficient BFS-
based method which combined with several non-trivial pruning
techniques. Finally, we propose an on-demand verification
algorithms to efficiently compute all the (A, 7)-hyperedges.

(iii) Extensive Experiments. We conduct comprehensive ex-
periments using 6 real-life hypergraphs to evaluate the pro-
posed algorithm under different parameter settings. The re-
sults indicate that our algorithms significantly outperform the
baselines in terms of the efficiency and accuracy. In addition,
we evaluate the efficiency of the proposed algorithms, and
the results demonstrate the high efficiency of our algorithms.
For example, on a large-scale hypergraph with more than
2M nodes and 4M hyperedges, our algorithm can predict the
potential hyperedges in about 6,000 seconds.

Organization. The related work is discussed in Section 2. Sec-
tion 3 introduces the model and formulation of our problem.
The algorithms to efficiently calculating the Hypergraph Edit
Distance and mining the (), 7)-hyperedges are proposed in
section 4 and 5. Experimental studies are presented in Section
6, and Section 7 draws the conclusion of this paper.

II. RELATED WORK

In this section, we review recent studies on three related
topics: link prediction, hyperlink prediction and graph edit
distance.

Link prediction aims to predict whether a pair of nodes in the
graph has a link [1]-[3]. Existing methods for link prediction
in traditional graphs can be classified into four categories,
including the topological-based methods [4], the path-based
methods, the supervised methods [5] and the unsupervised
methods. (i) The topological-based methods mostly predict
link based on the topological information of nodes on the
links. Some classic measures include Common Neighbours,
Cosine Similarity, Jaccard Similarity, Hub Promoted Index [6],
Adamic/Adar Index | 7], Resource Allocation Index 8], Leicht-
Holme-Newman Index [9] and so on. (ii) The path-based
methods can output all paths connecting the considered two
nodes. However, the concept of path has different models, such
as Shortest Path, Random Walk Path [10], Graph Edit Path
and so on. (iii) The supervised methods label the nodes and
define a loss function to train models that can classify data or
predict outcomes accurately [11]-[14]. The prediction model
is often in “black box” so the results are hard to explain.
(iv)The unsupervised methods cluster the nodes in the graph
and predict edges by connecting the similar node in the clusters
[15]-[19]. Note that, this method is non-explainable since most
clustering methods are hard to explain. Our work is similar to
the topological-based methods, since we need to capture the
neighborhood structure and use the edit distance to represent
the similarity. Unlike the above techniques, our work focus
on predicting hyperlinks, and we can also predict multiple
relations.

Hyperlink rediction aims to predict whether a set of nodes in
a hypergraph can be joined by a hyperlink. Recent studies on
hyperlink prediction are mainly based on building features or
embedding for hypergraphs and invoke neural networks-based
approaches for prediction, thus they are all non-explainable.
Yoon et al. [20] proposes an incrementally group representing
model and use a logistic regression classifier to predict the
hypergraphs. Kumar et al. [21] introduce a principle based on
the resource allocation process, which is a novel similarity
measure in the hypergraphs. Sun et al. [22] put forward a
new method to learn high-quality hyperedges using three novel
hyperedges distillation strategies automatically and present a
novel hypergraph neural networks to predict unobserved links.
Zhang et al. [23] propose nonnegative matrix factorization
method to infer a subset of candidate hyperedges that are
most suitable to fill the training hypernetwork. Jose et al. [24]
introduce a novel hypergraphlets-enumeration kernel method
on labeled hypergraphs for analysis and learning. All the above
mentioned methods are based on machine learning models,
in which the predicting process is a “black box” and often
hard to explain. Unlike those models, we propose to use
hypergraph edit distance to calculate the similarity of two
nodes in a hypergraph and develop a (A, 7)-hyperedge model

246

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

E;
|
A E,
|
A E3
[|
E,
(@))

Fig. 1. Example for a hypergraph

for prediction which can capture the neighborhood structure
in the hypergraph.

Graph edit distance. Our work is also closely related to the
classic graph edit distance (which can output a graph edit
path for explanation). The graph edit distance-based graph
similarity search is first studied in [25]. The algorithm to
calculate graph edit distance explores the space of all possible
mappings between two graphs based on an ordered tree, which
is constructed dynamically by iteratively creating successor
nodes linked by edges to the currently considered node. The
main challenge to calculate graph edit distance is to construct
the mappings in the graph as studied in [26]. Besides, some
recent works focus on designing index structures such as g-
gram-based index [27], subgraph-based index [28], [29] and
so on to filter out as many false-positive graphs as possible.
Besides, Chang et al. [30] study the graph edit distance
verification problem which verifies whether the graph edit
distance between two graphs is no larger than a threshold. In
this paper, we propose a significantly HGED algorithm, which
can capture the edit distance of two hypergraphs.

III. PRELIMINARIES

Let G = (V,E,[) be a labeled hypergraph, in which V is
the set of nodes, E is the set of hyperedges (Ei, F»...) and
l:VUE — X is a labeling function that assigns each node or
hyper edge a label from X.. Obviously, |E| < 2!V, We consider
simple and undirected hypergraph in this manuscript, so one
hyperedge E, € Eg is structured as an un-ordered set of
nodes (vg,,Vz,...) and it represents a set of |E,| nodes that
took interaction. For convenience, we record the nodes of
each hyperedge (v, , Uy, , Vs, -..) in ascending order such that
(r1 < x2 < x3 < ...). Fig. 1 illustrates a hypergraph G with
8 node and 4 hyperedges.

Here, we introduce some useful concepts for a hypergraph
G. Let Vg and Eg be the node set and hyperedge set of
G, n = |Vg| and m = |Eg| be the number of nodes and
hyperedges, NElg(v) = v U {u|3E, € Eg,{u,v} C E,}
be the set of neighbors of node v in G, and DEGg(v) =
{E:|lv € E;, E, € Eg}| be the degree of v in G. Considering
E, € Eg, the size of this hyperedge is |F,| and it also alias
the cardinality of F,. Hypergraph G’ is the sub-hypergraph of
G if V§ C Vi and Ef; C Eg. For a given set of nodes S C V,
Gg is referred to as an induced sub-hypergraph of G from S
which satisfies Vg, = S and Eg, = {E.|E, € Eg, E, C S}.

Example 1: Fig. 1(a) illustrates a labeled hypergraph G in
which the nodes are label by [J, A, (O, and hyperedges are
labeled by different colors (¢ and ¢). A hypergraph can be
also represented by a bipartite graph, as shown in Fig. 1(b).
We can observe that NElg (us) = {uq, ug, ug, us, ug, ur, us},
NElg (us) = {uq, ug, ug, us, uy, ug}. O

A. Node Similarity in Hypergraph

In a graph, one edge in a graph represents a binary
relation such that the problem of link prediction is to predict
the missing edges. This problem can be solved by defining
and computing the similarity between two nodes. However,
hyperedge represents a multiple relation, thus the definition
of node similarity in hypergraph is different and the problem
of hyperedge prediction cannot be solved by the existing
methods. Below, we introduce some definitions based on one
of the most popular graph similarity/distance metrics, Graph
Edit Distance (GED), to describe the similarity of nodes in
hypergraph. At first, we define the neighbor structure of a
given node in a hypergraph.

Definition 1 (Ego Network): Given a hypergraph G and node
v € Vg, the ego network of v, EGOg(v), is an induced sub-
hypergraph of G from v’s neighbors. Formally, EGOg(v) =
GNElg (v)-

According to Definition 1, the neighbor structure informa-
tion of node v can be stored in the ego network of it. As the
saying goes, birds of a feather flock together. Intuitively, two
nodes are similar if they have similar neighborhoods. Below,
we extend an important concept in graph theory, isomorphic,
into hypergraphs, such that we can check whether two sub-
hypergraphs are the similar.

Definition 2 (Isomorphic in Hypergraph): Given two hy-
pergraphs G and G’, G is isomorphic to G’ if there exists a
bijective mapping f from Vg to Vg such that

(i) Yo € Vi, 1(v) = 1(f(v));

(ii) VE, € Bg, I(E,) = 1(f(E.));

(iii) VE; = (Vgy,Vzy..); Ey
(f(va,), f(va,)..) € Eg.

The ego networks of two nodes in G have low probability
to be isomorphic since the condition is very strict. However,
a hypergraph can be transformed to be isomorphic to another
by a finite sequence of graph edit operations, and then we
can define the least-cost edit operation sequence to be GED.
However, considering the GED in hypergraphs, the hyperedges
contain nodes set of different size, so editing hyperedges with
different cardinality will have different cost. Thus, we define
the Hypergraph Edit Distance (HGED) as follows.

Definition 3 (Hypergraph Edit Distance): The hypergraph
edit distance between two given hypergraphs G and G/,
denoted by HGED(G,G’), is the minimum sum of edit
operations that can transform G to be isomorphic to G’. In
hypergraph, the atomic edit operations include:

(i) inserting/deleting a node or hyperedge (whose cardinality
is 0) with a label into/from the graph;

(ii) extending/reducing a hyperedge by adding/deleting one
node into/from it;

€ FEg if and only if

247

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

[} A
A |

u A
A |
(@) b)

Fig. 2. The HGED of ego networks of u4 and us in Fig. 1

(iii) changing the label of a node/hyperedge.

Example 2: According to Definition 1, Fig. 2(a), (b) are
ego networks of node uy, us in G of Fig. 1; Fig. 2(c),(d) are
corresponding bipartite graphs of Fig. 2(a), (b). One possible
sequence of edit operations for transforming Fig. 2(a) to be
isomorphic to Fig. 2(b) is as follows: (1) change the label
of Ey in Fig. 2(c) from e to e (Corange’ to ’grey’); (2-
4) reduce the hyperedge Es by deleting nodes wuy4,ug,ur
in Es5; (5) delete the node ug from Fig. 2(a); (6) delete
the hyperedge FEs. Thus, the Fig. 2(a) is isomorphic to
Fig. 2(b) after 6 edit operations and the mapping of nodes
is {u1,ug, us, ug, u7,ug} — {v2,vs, v4, vs,v7,Vs}. |

According to Definition 3 and Example 2, we can see that
the operation () is to add/delete nodes, the operation (i7)
is to add/delete edges and the operation (iii) is to change
the label of the nodes in the corresponding bipartite graphs.
In Example 2, to remove a hyperedge E» from G, we need
to reduce E5 by deleting ug4, ug, uy (operation i), and then
delete F5 since it still hold a label (operation ¢). Thus, the
edit distance of totally deleting F5 is 4. Besides, in Fig. 2(c),
it can be seen that we need to reduce E5 by deleting node
E5 and edges (u4, F2), (ug, E2), (u7, E2), which also has the
counts of 4. In Fig. 2(a), to change the label of F;, we can
change the label of E; from orange to grey by one step of
operation (¢3i). Furthermore, we can also represent the process
by a deletion and an addition of two operation (i). However,
according to Definition 3, we seek for the minimum sum of
edit operations, such that we cannot represent a change of
label with a deletion and an addition. In conclusion, the three
operations in Definition 3 are independent and indispensable.

Problem 1 (Node-Similar Distance). Given a hypergraph G
and node u,v € Vg, the goal of computing the node-similar
distance between u and v in G, is to count the hypergraph edit
distance between the ego networks of u and v, i.e. og(u,v) =
HGED(EGOG(U), EGOG(U)).

Note that, the traditional methods for measuring the similar-
ity of nodes include Common Neighbours, Cosine Similarity,
Jaccard Similarity, Hub Promoted Index [6], Adamic/Adar In-
dex [7], Resource Allocation Index 8], Leicht-Holme-Newman
Index [9] and so on. However, all of those metrics above
need to compute the interactions of the neighbors of the
corresponding nodes w and v. That is to say, if two nodes
have no common neighbors, their similarity is near to zero. In
the hypergraph, the neighbors of the nodes directly connected
are overlapped such that many of the pair of nodes have almost

same neighbors and their similarities are very high; the nodes
which are not directly connected have few common neighbors
such that their similarities are very low. Nevertheless, the
task of hyperedge prediction aims to get some nodes together
although they do not have common neighbors, such that the
traditional measures of node similarity are not proper to be
applied in the task of hyperedge prediction.

Hardness discussions. The key issue to solve problem 1 is to
compute the HGED of two given hypergraphs. Unfortunately,
computing the exact GED in a traditional graph is NP-hard.
Below, we can show that the traditional GED computation is
a special case of the HGED problem. Consider a hypergraph
in which each hyperedge only links two nodes. Clearly, to
compute HGED in this hypergraph is equivalent to computing
GED in the corresponding bipartite graphs. Thus, the problem
of computing HGED is also NP-hard.

Although there is a close connection between our problem
and the GED computation problem, the existing GED com-
putation algorithms cannot be directly applied to solve our
problem. The reason is that in the hypergraph we cannot get
the exact graph edit distance directly by a given mapping of
nodes. The details are introduced in section IV-A.]

B. Hyperedge prediction in Hypergraph

In section III-A, we have defined the node similarity in
hypergraph by an explainable method. In a graph, we can
compute the similarity for a pair of nodes, and then set a
threshold to verify whether the edge can be predicted. How-
ever, since the hyperedge represents a multiple relationship
and it connects more than two nodes, we should design new
similarity metrics for connecting the nodes in the predicted
hyperedges. Below, we put forward a cluster model which is
likely to be a hyperedge.

Definition 4 ((\, T)-hyperedge): Given a hypergraph G and
parameters 7 > 0, > 1, a node set S C Vg is a (A, 7)-
hyperedge if and only if Yu € S,Vvo € NElg,(u) =
0Gs(u,v) <7 and Yu,v € S = ogg(u,v) < A X T.

According to Definition 4, a (A, 7)-hyperedge is a set
of nodes in which the node-similar distance between the
neighbors is no larger than 7 and the node-similar distance
between any arbitrary pair of nodes is no larger than A\ x 7.
The following example illustrates how to derive a (A, 7)-
hyperedge.

Example 3: Consider the hypergraph in Fig. 1 with 7 =
6, A = 2. We first start at node uq, set S = uj, and identify
u1’s neighbors {us,us}, to check whether the node-similar
distance between u; and wus/u4 is no greater than 7. If the
distance of u; and us/uy4 is no larger than 7, this neighbor will
be added into the set S. This process is carried out iteratively
until no neighbor of v € S can be added into S. Then, we need
to check whether the node-similar distance of the arbitrary pair
of nodes u, v in S is no larger than A x 7. If the distance of u
and v is larger than A x 7, then u and v will be peeled from
S and checked to join in S later. O

248

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

Problem 2 (Hyperedge prediction). Given a hypergraph G,
parameters A > 1,7 > 0, the goal of hyperedge prediction is
to find all the (A, 7)-hyperedges in G.

Note that, the parameter 7 is set to control the similarity of
directly connected nodes in the hyperedges, and parameter A
is set to be lower than the diameter of the graph because it
controls the number of hops while searching. The restriction in
term of \ is necessary, because it can make (A, 7)-hyperedges
to be overlapping such that we can predict hyperedges of
diversity.

Hardness discussions. To predict all the hyperedges in G,
we need to compute the node similarity and check whether it
can be added into the cluster for each pair of nodes, which is
very costly and involves numerous redundant computations of
HGED. Therefore, the challenge of problem 2 is how to design
a searching framework and pruning strategies which has less
redundant computations. O

For convenience, the nodes and edges in hypergraph G
are denoted by {u;,,u;,,...,u;, } and {F1, Es, ..., E,}; the
nodes and edges in another hypergraph G’ are denoted by
{vi iy, .y vs,, } and {E], EY, ..., E)).

IV. COMPUTING NODE SIMILARITY IN G

According to problem 1, given a hypergraph G, the node
similarity of nodes u and v in Vg is measured by the
hypergraph edit distance between EGOg(u) and EGOg(v),
so the key issue of this problem is to compute the HGED
of two hypergraphs. In this section, we first introduce a
heuristic enumerating framework to compute the HGED of two
given hypergraphs. Then, we propose a bipartite graph-based
method which can get an accurate answer. Next, we develop a
powerful pruning algorithm which can compute the HGED
more efficiently by techniques including node re-ranking,
upper bound estimations and lower bound estimations.

A. A Heuristic Framework for Computing HGED

To solve the problem of computing the graph edit distance,
an intuitive method is to enumerate all the mappings of
nodes or edges for the graph G; and G, then record the
mapping which has the fewest edit distances. Since the GED
problem is proved to be NP-hard, the SOTA works adopt
the filtering-and-verification paradigm to reduce the number
of GED verifications, and they mainly focus on designing
filtering techniques while using the A*-GED framework for
verification. As the HGED problem is also NP-hard, we have to
adopt the filtering-and-verification paradigm which can ensure
an exact answer. First, we prove in Lemma 4.1 that there is
no node insertion in the optimal sequence (i.e., the sequence
with the minimum number) of edit operations that transform
G into G'.

Lemma 4.1: Given hypergraphs G and G’ with |Vg| > |V,
there is no node insertion in the optimal sequence of edit
operations that transform G into G’.

Proof: Assume that there is a sequence of edit operations,
O = {o01,092,...,0i,...}, which is the optimal sequence of
edit operations that transform G into G’, and contains a node

Algorithm 1: HGED-HEU(G, G)

Input: Two hypergraphs G and G’

Output: The edit distance of G and G’ i.e. HGED(G, G")
Let n,n’ « |Vg|, |Vgr|, without loss of generality, n > n';
Let Vg = {uiuuiw e ui”}; Extend Vg to {’Uj“.../l)jn};
I+ {il,iz, ...,in}; I+ (D;

DFS(0,0,n,0,1); edc + inf;

for I* < {i},i5,...,in} € L do

L e Huig, wig, o uin b = {050, Va5 s Vi,

edc = EDC-INAC(G, G/, f);
if edc > edc then edc = edc;

RN - N R S

return edc +n — n’;

10 Procedure DFS(level, visited,n, f,I)

1 if level = n then {I < I U f.keys(); return;}
12 for i € [1:n| do

13 if lvisited[i] then

14 visited[i] < True; fllevel] = i;

15 DFS(level + 1,visited, n, f,1);

16 visited[i] < False;

17 Procedure EDC-INAC(G, G/, f)

18 /* f = {{uil y Wig s -~-7uin} — {1}1171}]'27 "'7an}} *
19 edc + 0;

20 /* node relabeling on G/

21 for k € [1:n] do
2 | if l(ug,) # 1(v;,) then edc < edc + 1;

23 /* hyperedge deletion / relabeling on G */

24 for E + {ui,, ui,...u;, } € Eg do

25 for k € [1: h] {if f(us,) ¢ Eg then edc < edc + 1};
26 if 1(B) # 1({f(uiy), ..., f(ui,)}) then edc < edc + 1;

27 /* hyperedge extending / reducing on G */

28 for E' < {vi,,vi,...v5, } € Egr do

29 for k € [1: h] {if f~(vi,) ¢ Eg then edc < edc + 1};
30 if 1(E) #1({f™ (viy), ..., F~ (viy,)}) then edc < edc + 1;
31 return edc;

b

insertion operation. Without loss of generality, let o; be a node
insertion operation of inserting a node with label z. Since
|[Vi| > |V, there must be a node deletion operation o; € O.
Now, consider another sequence of edit operations O’, it differs
from O by remove o; and changing o; from deleting the node
into relabeling the node with label x. It is easy to verify that
|O'| = 10| — 1, and O’ can also transform G to G’, which
contradicts that O is optimal. (|

According to lemma 4.1, we can extend Vg by null node to
have the same size as Vg in the algorithm at first. Below, we
introduce a heuristic enumeration framework and abbreviate it
as HGED-HEU.

Algorithm 1 first extends Vg by null node to have the
same size as Vg based on lemma 4.1 (lines 1-2). Then, it
initializes an array [to store the index of Vi and I to store the
permutations of I (line 3). Next, the procedure DFS generates
all the permutations of the array I (line 4), which is detailed
in lines 10-16. For each permutation I* in I, we construct
a mapping f of nodes in line 6. Next, we calculate the edit
distance of f and record the lowest value in all loops (lines 7-
9). Finally, the algorithm returns edc + n — n’, which is the

249

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

Vs A

Vs A

;0

VgO

Fig. 3. The DFS search tree of mapping EGOg(v4) to EGOg(vs) in Fig 2.

lowest edit distance plus the edit cost of extending Vg/. In
lines 10-16, the procedure DFS build a search tree by Depth
First Search. The root node of the search tree is at level O,
and represents an empty mapping @). The procedure records the
level, the visited node set, the mapping size n, the candidate
mapping f and the result mappings I. An intuitive example
of the DFS search is shown in Fig. 3. In lines 17-31, the
procedure EDC-INAC computes the edit cost of the node
mapping f = {{w,, Wiy, ..., i, } = {vj;, Vjy, ..o, v5, }} from
Vi to V. If the label of node u;, is not equal to the label
of vj,, the recorded value edc increases by 1 (lines 21-22).
Consider the hyperedge E € Eg, if the mapping edge is not
existed, then the deletion of each node will result in an increase
of edit distance (line 25), and if the label of the mapping edge
is not same to the label of F, edc will add up by 1 (line
26). Similar, consider the hyperedge E’ € Fg/, edit distance
increase if the corresponding edges are not in Eg (lines 27-
30). However, we hold the following observation by analyzing
the edited hyperedges.

Example 4: As shown in Fig. 3, since the number of nodes
in EGOg(vs) is 6 but the number of nodes in EGOg(vy4) is
7, we first extend EGOg(vs) by a node v,. Next, we traverse
the nodes {u1, us, u4, us, ug, U7, ug} by depth first and we can
get all the permutations of them. O

Observation 4.1: Procedure EDC-INAC can give an instance
of edit distance but it is not minimum for the mapping f.

The observation 1 holds because in procedure EDC-INAC,
we simply extend or reduce one whole hyperedges once they
are not mapped, but we can slightly change one hyperedges by
adding/deleting one node into/from it. In the following section,
we propose a method which can compute the accurate edit cost
between the two hypergraphs.

Complexity of HGED-HEU. For a hypergraph G with n
nodes and m hyperedges, the time complexity of HGED-HEU
(Algorithm. 1) is O(m x n!).

Proof: First, Algorithm. 1 needs O(n) to extend the
nodes (line 1). For each index of nodes (line 5), it needs to
invoke the procedure EDC-INAC to compute the edit cost (line
7). While computing the edit cost, we need O(n + m)
to record the node/edge relabeling operations (lines 20-23).
and O(m) to record the hyperedge insertion/deletion since
the average cardinality of hyperedges is no larger than 10

Fig. 4. The accurate edit cost computation of EGOg(v4) to EGOg(vs)

(lines 23-30). As the number of node mapping is the full
permutations, so the algorithm needs to invoke EDC-INAC
for O(n!) times. In conclude, HGED-HEU needs the time
complexity of HGED-HEU. (]

B. A Bipartite Graph-Based Computation for HGED

To compute the accurate edit cost from G to G’ under the
node mapping f, we need to consider the mapping of all the
hyperedges. Below, we introduce the algorithm 2, which is
abbreviated as EDC.

Algorithm 2 first generates a bipartite graph Bg construct
by G, in which the nodes of Bg consist of Vo U{ug,,...ug,, }
and the edges consist of {(us,up,)|lu; € FEj;}. Similarly,
let Bg: be a bipartite graph construct by G’. Then, the
algorithm initializes the mapping of hyperedges by /g (line 3),
and generate the permutations of Ir into Ir by procedure
DFS (line 4). For each mapping of hyperedges I}, (line 5),
we combine the node mapping f and 7, into a fixed mapping
/' (line 6). If the label of node or edge is not mapped (lines 7-
11), the maintained edit cost edc increases 1. For each
edge (u;,ug,) in the constructed bipartite graph Bg, if edge
(f'(us), f'(ug;)) is not in another bipartite graph Bg/, we
must delete an edge from Bg and edc will add up by
1 (lines 12-14). Furthermore, Bg do not have the edge in
Bg/, we must add an edge into Bg and edc will increase
1 (lines 15-17). Finally, edc record the minimum edit cost and
the algorithm returns edc (line 19).

Example 5: Recall Fig. 2, we first add a node v, and
a hyperedge FE, into the mapping list, which can make
sure that the length of nodes and hyperedges of G and G’
are the same. Next, the algorithm HGED-DFS enumerates
the nodes by depth first. Unlike Fig. 3, the accurate edit
cost computation also enumerates the permutations of all the
hyperedges, such that we can count the node/edge relabeling
and edge deletion/insertion to compute the accurate edit cost.
For example, the total cost of node relabeling of mapping
f = {va, vs,ug, us, v7,v8, v} — {u1,ug, uq, us, ug, Uz, ug }
is 1. And the total costs of edge relabeling by mapping

250

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: EDC(G, G/, f)

Algorithm 3: HGED-BFS(G, G’)

Input: Two hypergraphs G, G’ and a mapping f from Vg to
Ver (f = {{uir, oy ui } = {0505, 05, 1)
Output: the minimum edit cost from G to G’ under f
1 Let Bg be a bipartite graph construct by G, in which
VBG — Vg U {uEl, ...uEm}; EBG — {(ui,qu)|ui € E]'};

2 Similarity, Bg is a bipartite graph construct by G';

3 Let Ig < {El,E27...Em}; Ig «— (Z);

4 DFS(0,0,m,1g); edc + 0;

5 for I € I do

6 I {{uwiy, wigoony wiy , Uy Uy, - U, T
{051, Vig s Vin s Vi), VY s s Uy, s €de <= 05

<

/* node/edge relabeling on Bg */
8 for k € [1:n] do
| if [(uiy) # U(vj,,) then edc < edc + 1;

10 for h € [1:m] do

11 L if l(uf,) # l(vg,) then edc < edc+ 1;

12 /* edge deletion on Bg */

13 for each (ui,uE;) C EB, do

14 | if (f'(wi), f'(ur;)) ¢ Ep,, then edc < edc+ 1;
15 /* edge insertion on Bg */

16 for each (vi,vg;) C Ep;, do

17 | i (f'" (vi), [~ (vm;)) ¢ Ep, then edc edc + 1;
18 | if edc > edc then edc = edc;

return edc;

—
b

{E}{,E},E,} into {Ey,Ey,Es} or {Ey,E4,Ey} are 3 or
2. However, the costs of edge deletion/insertion by mapping
{E},E},E,} into {Ey, E2, E4} under node mapping f is
24+41+4 =7, including {1]2,1)371)5} — {U17UQ,U4},
{vy, v5,v7,v8} — {uq, ug,ur} and O — {uy, us, ur, ug}. And
the cost of edge deletion/insertion by mapping {F%, E}, E.}
into {F1, E4, E2} under node mapping f is 24+2+4+3 =7,
including {ve,vs,vs} — {u1,uz,us}, {v4,vs,v7,08} —
{uq, us,ur,us} and O — {uy,ug,ur}. So the total edit cost
of {f,{E%, E},E.} = {E1,E,Es}}is 14+3+7=11, and
the total edit cost of {f,{E%, E}, E.} — {E1,E4, Es}} is
1+2+7=10. (I

As Fig. 4 and Example. 4 show, EDC(G, G/, f) can compute
the accurate edit cost from G to G’ under the node mapping
f. In addition, we modify the algorithm 1 by replacing the
EDC-INAC into EDC, and abbreviate the new algorithm as
HGED-DFS.

Complexity of HGED-DFS. For a hypergraph G with n nodes
and m hyperedges, the time complexity of HGED-DFS is
O(m x n! x m!).

Proof: The HGED-DFS is modified by algorithm 1 with
replacing the EDC-INAC into EDC. So it also need to invoke
procedure EDC for O(n!) times. However, in EDC (Algo-
rithm 2), we also need to enumerate the permutations of
all hyperedges, such that the time complexity of EDC is
O(m x ml!). So the total time complexity of HGED-DFS is
O(m x n! x m!). O

251

Input: Two hypergraphs G and G’
Output: The edit distance of G and G’ i.e. HGED(G, G")
1 Let n + max(|Vg|, |Ver|), m + max(|Eg|, |Eg|);

2 Let VBG be {uil s WUigy ey Uigy s UWEL s UEgy -eey uEm}; and VBG’
be {v’il y Vigy oovy Vi s /UEi) vEé? “eey ’UE;,L }’

3 Let I < ReRank{i1,i2,...,0n, F1,..., Em}; [Strategy 1]

4 edc <+ estimate a upper bound for edit cost; [Strategy 2]

5 Q<+ {[0,0,0,1,0]}; R« 0;

¢ while Q # 0 do

7 [level, visited, f, I, edc] < Q.pop();

8 for z < [level : n 4+ m] and lvisited[z] do

9 C < cost of editing from UT[z] 1O Va;

10 edc <+ estimate lower bound of mapping the

remaining nodes; [Strategy 3]
1 if edc + C + edc < edc then

ifz+1=mn+mthen R= RU (edc+ C(z));
else Q.push([level + 1, visited U ujg), f U
{fllevel] « I[z]}, I, edc+ C(x));

12
13

14 return min(R)

C. A BFS Pruning Enumeration for Getting HGED

Although we can use HGED-DFS to compute the HGED
of two hypergraphs, it still has two limitations. (i) it has
to enumerate all the permutations of nodes and edges to
get all candidate mappings. (ii) it is hard to find some
lower bounds while using the DFS metric to search the
mappings. To overcome those two limitations, we propose an
improved algorithm called HGED-BFS. The striking features
of HGED-BFS are twofold. On one hand, it needs not to
enumerate all the permutations of nodes and edges. Instead,
it calculates edit cost during the enumeration and early
terminates while the current edit cost is larger than the
currently optimal answer. On the other hand, HGED-BFS
searches the mappings by Breadth First, such that we can
compute several lower bounds for different levels of the search
tree, which will significantly speed up the enumerations.
Below, the detailed description of HGED-BFS is shown in
Algorithm 3.

Algorithm 3 first extends Vg and Vg to contain all the
indexes of nodes and hyperedges in G and G’ (lines 1-2).
Then, it samples several mappings to get an estimation upper
bound for the edit cost between G and G’ (line 4). Next,
the algorithm initializes a queue (), to search the index of
Vi by Breadth First (line 5), and perform several powerful
pruning strategies during the enumeration (line 10). There are
three strategies to speed up the enumeration. And an intuitive
example of the BFS search is shown in Fig. 5.

Example 6: Unlike Fig. 4, we first re-rank the nodes and
hyperedges by their degrees and cardinalities ([Strategy 1]),
such that the Vg, is {U4,U5,U,1,UQ,U7,UG,US,E4,E1,E2}.
Then, we can estimate the upper bound by the original
matching order ([Strategy 2]) such that edc = 1 + 2 +
44+ 54+ 3 = 15. Next, we traverse the Vp, by breadth
first. It enumerates the first level and record the cost of
editing from the current u, to the mapping node v,, such that

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

van @u,0) (15,0) (a1) g1) it 1)

u;, 0

(”7"”1 D (%

ug, 0

:)
DG

E3
Ej . .)

— v T ¥ T T
E CE2 |(En2 J(Ex2 J(Ew3 J[En2z J(En3]

Fig. 5. Examples for computing HGED-BFS(EGOg (v4), EGOg(vs))

(ug,0)(Uug = U(vs)), (us,0)(l(us = U(vs)), (u7,1)({(ur #
l(vs)) and so on. However, it also computes the label based
and hyperedge based lower bounds de?’ + dejﬁeb ([Strategy
3]). If the sum of the accumulated edc, the current editing cost
C and the lower bounds of the remaining mapping edc is no
larger than the upper bound edc, then the algorithm pushes
the array into the queue (Q which makes sure they will be

searched in the BFS tree. O

[Strategy 1] Rerank the nodes. The matching order can be
optimized at the beginning of the initialization (line 3 of
algorithm 3). It is mainly based on four intuitions: (i) the node
with the higher degree should be mapped first; (ii) the nodes or
hyperedges with the same label should be put together because
they are more likely to be be similar nodes or hyperedges;
(iii) the nodes should be mapped before the hyperedges; and
(iv) the hyperedge with the higher cardinality should be be
mapped first. So, the first node should be the one with the
highest degree and the following nodes should have the same
labels with the first one. The optimized matching order has a
great influence to the running time in practice, which will be
shown in Section. 6 below.

[Strategy 2] Upper bound estimation. The upper bound of the
HGED can be estimated by two methods. The first one is that
we can set a threshold 7 because we are not interested in two
sub-hypergraphs which are not much similar to each other.
In our experiments we find that the parameter setting of 7
will largely reduce the running time of the whole algorithms.
The second one is that we can sample some random matching
orders and compute the edit cost of the given matching. We
can consider the four intuitions in the strategy 1 above, and we
also find that in some situations the simply ranked matching
order has the similar HGED as the optimal mappings.

[Strategy 3] Lower bound estimation. The lower bound that
has been extensively used in the existing algorithms [25], [30].
However, since the mappings in our proposed HGED model
contain nodes and hyperedges, we propose the following lower

ki Vit
7 ViA 7 ViA
2 B/
}/ 28 }/ 28
E!ﬁwvg. E;ﬁvsn
E v;0 E V70
‘vg0 ‘vg0
Vs V.
(@))

Fig. 6. Computing the edge deletion/insertion of two mappings

bounds.

Definition 5 (label based lower bound): Given two labeled
hypergraphs G and G/, the label based lower bound is eLlcéf’ =
U(I(Vg),l(Ve)) + Y((Eg),l(Eg)) where ¥(S;,S2) =
max{|S1|, |SQ|} — |51 n SQ|

According to Definition 5, we can have that if the label set of
nodes and hyperedges in G are { A, A, B, C} and {a, a, b}, and
the label set of nodes and hyperedges in G’ are {A, B, B,C}
and {b, b, c}, the label based lower bound is 4—3+3—1 = 3.

Definition 6 (hyperedge based lower bound): Given two
labeled hypergraphs G and G/, the lllyperedge based lower
bound is edc}®’ = maxE?foEGMEGl)H\Ei\ — |El]|| where
FE; € Eg and EL/ € Eg.

According to Definition 6, for example, if the hyperedges
{E1, Es, E3,E4} in G have the cardinalities of {4,2,5,3};
and the hyperedges { £, ES, E4, E}} in G’ have the cardinal-
ities of {6,4,4,3}. Then the hyperedge based lower bound is
6—-5+4—-4+4-3+3-2=3.

We can find that the label based lower bound and the
hyperedge based lower bound have no overlaps, such that the
edc = eLlclfb + Lclc?eb. We show an example of searching with
estimating the lower bound in Fig.6.

Example 7: Consider the hypergraph edit distance
of EGOg(vs) and EGOg(vs)). Recall Fig.5 , we get
two mappings in Fig.5 and show them as Fig.6(a)

and Fig.6(b). Fig.6(a) correspondences to the mapping
f! from {vs, V4, U2, us, v7, V8, Vs, B4, B4, B} to
{’11,47 Us, U1, U, Ug, U7, Us, By, F1, EQ} Therefore, the
edit cost of node label for f’ is 1 (which can be acquired
in the 3rd item of level 7 in Fig.5), the edit cost of
hyperedge label for f’ is 2 (which can be acquired
in the first item of level 10 in Fig.5), and the edge
insertion/deletion cost of f’ is 2 4+ 0 + 3 = 5, so the edit
cost of f"is 1 + 2+ 5 = 8. Fig.6(b) correspondences to
the mapping f” from {vs, vy, us, us, vy, vs, Vs, BS, By, By}
to {ug,us,us, us, uy, us, ug, B4, E1, Ea}. So, the edit cost
of node label for f’ is 1 (which can be acquired in the 2nd
item of level 7 in Fig.5), the edit cost of hyperedge label
for f’ is 2, and the edge insertion/deletion cost of f’ is
040+ 3 = 3, so the edit cost of f/is1+2+3 =6.1In
addition, we can find that the edge insertion/deletion cost of
/' equals the hyperedge based lower bound, and the edit cost
of node/hyperedge labels also equals the label based lower
bound. Therefore, the f in Fig.6(b) is no doubt the optimal
hypergraph edit distance. We can also observe that the value
6 is same as the count of edit operations in Example 2, so

252

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

|
}

(@) © (@)
Fig. 7. Explainable Hypergraph Edit Path

those edit operations in Example 2 is the optimal hypergraph
edit path. O

Complexity of HGED-BFS. For a hypergraph G with n nodes
and m hyperedges, the time complexity of HGED-BFS is
O(m x 2 x 2h¢)_in which h,, and h. are maximum search
levels of node and hyperedges.

Proof: Algorithm 3 needs to maintain a queue) (line 5),
as can be seen in Fig. 5, the length of () is no larger than
O(x2" x 2he)in which h, and h. are maximum search
levels of node and hyperedges. And calculating the edit cost
for each node or hyperedge needs O(m). So, the total time
complexity of HGED-BFS is O(m x 2hv x 2he). O

Note that, according to the pruning rule of strategy 2 and
3, h, and h, are near to the upper bound and lower bound of
the edit operations, such that they are usually not larger than
10. We will show the running time in practice at Section 6.

D. An Explainable Hypergraph Edit Path

Example 6 introduces that the edit operations in Example 2
is the optimal hypergraph edit path. Here, we introduce how
we can explain the node similarity by a given hypergraph
edit path. Fig. 7 shows the hypergraph edit path from the ego
network of node u,4 into the ego network of us in Fig. 2. We
can explain that the transformation from Fig. 7(a) to Fig. 7(d)
as follows. First, one group changes their interests from e to
(Corange’ to "grey’), as shown in Fig. 7(b). Then, the remaining
people which are interested in o disappear, but there is only
one person left (Fig. 7(c)). Next, the last person also leaves and
there only have two groups of e. So, this transformation from
(a) to (d) may be a rise of emerging topics in a hypergraph,
in which the old topics (¢) and the person who persists the
old topic are disappear from the network, but the remaining
people fall in interest with a new topic. And the total distance
of those two relations is 6, as calculated in Example 2 and 6.

For each HGED, we can always output a Hypergraph Edit
Path and we can try to explain it as the descriptions above.

V. HYPEREDGE PREDICTION

In this section, we develop an efficient algorithm to compute
all the (A, 7)-hyperedges. The basic idea of our algorithm is
as follows. According to the definition of (), 7)-hyperedges,
we can find that a (A, 7)-hyperedge denotes a set of nodes in
which the similar distance of the directly connected nodes is no
larger than 7 and the similar distance of each pair of nodes is
no larger than A\ x 7. An intuitive method is to compute all the
node-similar distance for each pair of nodes in the hypergraph
to get a connected component .S, then enumerate all the nodes

Algorithm 4: HEP(G, 7, \)

Input: Hypergraphs G and parameters 7, A
Output: The predicted (A, 7)-hyperedge
1S« 0;
2 forue Vg st u ¢S do
S+ {u}; Q + {u};
while Q # 0 do
v Q.pop();
for w € NElgg (v) and w ¢ S do
L if HGED(EGOg4 (w), EGOg4 (v)) < 7 then

®w N kW

| S.add(w); Q.push(w);

9 | S.add(S);

10 for each S € S do

11 Search S by BFS as lines 5-13 of Algorithm 3; or by
DFS as lines 10-16 of Algorithm 1;

12 If |[PATHg(u,v)| > A, then we need to check whether
HGED(EGOg (u), EGOgg (v)) < A X T;

13 Return possible set S’ C S in which each u,v € S’
statisfies HGED(EGOg,, (u), EGOg,, (v)) < A x 7.

and check which node can be added into .S. Before introducing
the algorithm, we present a lemma which helps to transform
from the connected component S into a (A, 7)-hyperedge.

Lemma 5.1: Given a hypergraph G, nodes u,v € Vg and
parameters 7 > 0,\ > 1, if there is a path {ug,uy, ..., u;,
(uy = u, u,, = v, p < |A|) satisfying og(uj,uj,,) < 7 for
i € [0 :|A| —1], then u, v are in at least one (\, 7)-hyperedge.

According to lemma 5.1, we can first compute several
connected components S from one node v by search all the
neighours, and then filter and enumerate the nodes whose are
over A\-hops from v. The detail of the HEP algorithm is shown
as follows. For each node in the hypergraph G, we initialize
a set S to record the candidate connected component S, a
queue @) to store the nodes in the enumeration path (line 2).
Then, the algorithm checks all the neighbor of the nodes in)
and attempts to find all the nodes which directly connects to
S and the similar distance of the connection is no larger than
7 (lines 3-8). After all the nodes are considered, the connected
component S is added into S (line 9) and the algorithm restarts
to find another connected component (line 2).

Next, the algorithm searches the candidate S by BFS, similar
as lines 5-13 of Algorithm 3; or by DFS, similar as lines
10-16 of Algorithm 1. However, in each enumeration, it first
checks whether v is over A-hops from w (line 12). If so, it
checks whether the node u to be added into the enumerated set
S, satisfies that Vo € S, HGED(EGOg_, (u), EGOg,, (v)) <
A x 7. If HGED(EGOg,, (u),EGOg,, (v)) < A x 7, the node
u will be added into S’. Otherwise, the enumeration continues
but « is not added into 5.

Complexity of HEP. For a hypergraph G with n nodes and
m hyperedges, the time complexity of HEP is O(n? x m x
2w x 2P<) in which h,, and h, are maximum search levels
of node and hyperedges.

Proof: Algorithm 4 needs to compute the HGED for at most
O(n?) times, since we can store the HGED results for each

253

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I
STATISTICS OF DATASETS

Dataset| |V| = n | |[E| = m || E|||E|||I(V)]
PS 242 12,704 [24]2| 11
HS 327 7,818 |23]2] 9
MO | 73,851 | 5,446 [24.2| 51,456

WM | 88,860 | 69,906 |6.6|5 | 11
TVG | 172,738 | 233,202 |4.1| 3 | 160
AMZ 2,268,231/4,285,363|17.1| 8 | 29

pair of nodes. However, as HGED needs O(m x 2w x 2h¢)
to compute the node-similar distance for each pair of nodes,
the time complexity of HEP is O(n? x m x 2 x 2he). O

VI. EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate the proposed algorithms. We implement seven different
algorithms for comparison:

« HGED-HEU is a baseline that computes an instance of
edit distance of two sub-hypergraphs, which is proposed in
Section 4.1.

o HGED-DFS is an algorithm which can compute the edit
distance of two sub-hypergraphs by DFS search, which is
proposed in Section 4.2.

« HGED-BFS is an algorithm which can compute the edit dis-
tance of two sub-hypergraphs by BFS with several pruning
strategies, which is proposed in Section 4.3.

e JS is a baseline in which we use Jaccard Similarity to
compute the similarity for each pair of nodes, and then use
the HEP framework to predict hyperedges.

o HEP-BFS is the HEP in which we use a BFS search to
compute the HGED, which is proposed in Section 5.

o HEP-DFS is the HEP in which we use a DFS search to
compute the HGED, which is proposed in Section 5.

o LGR [20] is a SOTA logistic regression classifier to predict
the hyperedges with L2 regularization, which uses the n-
order expansion of a hypergraph to capture the features.

All algorithms are implemented in Python. All the experi-
ments are conducted on a Linux kernel 4.4 server with an Intel
Core(TM) 15-8400@3.80GHz processor and 32 GB memory.
When quantity measures are evaluated, the test was repeated
over 5 times and the average is reported here.

Datasets. We use 6 different real-world hypergraphs in the
experiments. The detailed statistics of our datasets are summa-
rized in Table I, where | E'| denotes the mean of the hyperedge
size, | E'| denotes the median of the hyperedge size, and |I(V)]
denotes the number of node/hyperedge classes. All the datasets
are downloaded from https://www.cs.cornell.edu/~arb/data/.
PS (primary school) and HS (high school) are datasets of the
contact in primary and high school in which each hyperedge
corresponds to a group of people that were all in proximity
of one another at a given time, and each node is labeled
as a teacher or the classroom to which the student belongs.
MO (mathoverflow) are sets of questions answered by users on
Math Overflow, where labels are question tags. WM (walmart)
are sets of products bought on Walmart shopping trips, where
labels are departments of products. TVG (trivago) are sets of

B HEP LGR

Precision

(b) Recall

I HEP LGR

(c) Fy score

Fig. 8. Effectiveness results of different algorithms

hotels clicked on in a Web browsing session, where labels are
the countries of the accomodation. AMZ (amazon) are sets
of products reviewed by users on Amazon, where labels are
product categories.

Goodness metrics. We use the method of Data Validation
Testing to test the effectiveness of the hyperedge prediction.
We split the hyperedges into a testing dateset and a validation
dateset by a ratio of 3 to 1, and conduct our proposed method
to predict the hyperedges on testing dateset. Then, we record
the predicted results of testing dateset and compare them with
the validation dateset. Next, we use a Precision-Recall metric
to evaluate the prediction quality.

Precision P is defined as the number of true positives Tp
over the number of true positives plus the number of false
positives Fp, such that P = T:;_ipﬂ

Recall R is defined as the number of true positives Tp over
the number of true positives plus the number of false negatives
Fy, such that R = TPT_;P T

These quantities are also related to the F score, which is
defined as the harmonic mean of precision and recall, such

— PXR
that Fy = 2 x £

A. Effectiveness Evaluation

Exp-1. Effectiveness results of different algorithms. Fig. 8
shows the results of the proposed hyperedge prediction algo-
rithm HEP with A = 3,7 = 5 (as HEP-BFS/HEP-DFS are
the variants of the algorithm HEP (Algorithm 4) in which
we use HGED-DFS/HGED-BFS to calculate the node-similar
distance. Both of them output the same results, thus we use
HEP to denote our method in effectiveness testings). The
baseline JS also has parameter A and 7, and we set A = 3,
7 = 0.8 such that the ratio between the intersection and the
union of the neighbor nodes is no less than 0.8. In LGR [20],
we set n = 3 and extract 6 features. Similar results can also
be observed using the other parameter settings. We can see
from Fig. 8(a-c) that JS performs poorly in all situations,
because JS can only capture limited structural information of
the nodes while modeling the similarity. As shown in Fig. 8(a),
HEP outperforms LGR in terms of the Precision metric in

254

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

4 rs @ MO -@ TG B rs @ MO -@ TVG
1.0{-@- Hs WM = AMZ 1.0| -@ Hs WM == AMZ
g S
goe goe H‘H—Q—H_.
2 2
~04 ~0.4
0.2 0.2

0.0

0.0

2 3 45 6 7 8 9 345 6 7 8 910

(a) Precision (vary \) (b) Precision (vary)

1.2/ P -@ MO -@& TVG 1.2/ Ps -@ MO -@ TVG
-®- HS WM —k— AMZ @ HS WM —k— AMZ
1.0 1.0 >0-0-0-9
gos ﬁ% Pl === = =
& &
0.6 0.6
0.4 0.4

2 3 45 6 7 8 9 34 5 6 7 8 910

(c) Recall (vary X) (d) Recall (vary 7)

- rs -@ MO -@ TG B rs -@ MO -@ TG
1.0{ @ Hs WM k= AMZ 1.0] @ Hs WM k= AMZ
£os £os
oY 5 0.

S S

? ?@

i 0.6 ! g. % Z0.6 l !E._ﬁ.i
0.4 0.4

2 3 45 6 7 8 9 3 45 6 7 8 9 10

(e) F1 score (vary A) (f) F1 score (vary T)

Fig. 9. Effectiveness of HEP with varying parameters on all datasets

all datasets. This is because our proposed algorithm HEP
uses the structural information to predict hyperedges, which
is more accurate than the feature-based methods. Note that,
in the datasets PS and HS, the precision value is near to
0.8, but in dataset MO, the precision value is much lower.
The reason is that the hyperedges in PS and HS are much
denser than that in MO; thus, the prediction is more accurate
in a hypergraph with higher density. However, in Fig. 8(b),
the Recall of the hyperedge prediction by LGR is slightly
higher than HEP. This is because that LGR considers the
cases where each candidate hyperedge has cardinality 3, 4, ...
10. However, the cardinalities of most hyperedges predicted
by HEP are 3 and 4. Therefore, LGR tends to find more
hyperedges than HEP which results in better performance in
terms of the recall metric. In Fig. 8(b), consider the dataset
AMZ, where LGR outperforms HEP. This is because the labels
on AMZ is generated by a machine learning method, which
uses similar features as LGR. Therefore, we believe that this is
the characteristics of this dataset that allow LGR to be better.
In Fig. 8(c), we can observe that the FI-Score of HEP is
better than LGR in most datasets. The results indicate that our
model has better comprehensive performance.

Exp-2. Effectiveness results of HEP with varying parame-
ters. Here we study how the parameters affect the effective
performance of our algorithm. Fig. 9 shows the results of
HEP with varying parameters. We vary A from 2 to 9 with a
default value of 3 in the testing, and 7 from 3 to 10 with a
default value of 5. Unless otherwise specified, the values of the
other parameters are set to their default values when varying

eJingbo Shang
«Meng Jiang

_TleJiawei Han
- » Xiang Ren
|

N
yd

@/Meng QI;J /

~_leHeng Ji

(a) The hyperedges which contain
Prof. Jiawei Han in year 2016

(b) The prediced hyperedges
Fig. 10. Case study on DBLP

a parameter. As can be seen in Fig. 9(a)-(b), the Precision
increases with growing A and 7. This is because when A or
7 values increase, the T, value in Precision will be larger.
However, we can find the change of the Precision with varying
T is not very significant, compared to the parameter A. The
reason may be that A has a direct impact on the size of the
predicted hyperedges, and the predicted hyperedges change
more frequently when varying A. In Fig. 9(c)-(d), the Recall
value decreases with growing A and 7. This is because when
A and 7 increase, more possible hyperedges are found and the
incorrectly-rejected instances Fy in Precision will be lower.
In Fig. 9(e)-(f), we can find that the FI-Score decreases with
growing A and 7, and the change is more slight while varying
7. It indicates that the performance of our model is better when
A and 7 are lower.

Exp-3. Case study on DBLP. Here, we conduct a case study
to show that the proposed method can indeed predict possible
co-author relations on DBLP. Fig. 10(a) shows 24 hyperedges
which contain Prof. Jiawei Han (http://hanj.cs.illinois.edu/) in
year 2016. In Fig. 10(a), each node represents a researcher
and each hyperedge is a publication on DBLP in year 2016.
Fig. 10(b) shows parts of the (3,5)-hyperedges which is
predicted by our proposed model. In Fig. 10(b), we can find
that the hyperedge of the ‘orange’ color contains researchers
“Jiawe Han”, “Xiang Ren”, “Jingbo Shang” and “Meng Jiang”.
Interestingly, we find that in year 2017, the above authors
have co-authored a KDD paper [31] and an arXiv paper
[32], but they did not collaborate together in year 2016.
Besides, we can also record all the edit path for each pair
of nodes in the hyperedges, which makes the calculation
of similarity explainable. In conclusion, the proposed (A, 7)-
hyperedge model can indeed correctly predict the missing
hyperedges in hypergraphs.

B. Efficiency Evaluation

Exp-4. Running time of HGED computation methods. Ta-
ble. II evaluates the running time of HGED-HEU, HGED-DFS
and HGED-BFS. We invoke each algorithm for 1,000 pairs of
nodes in different datasets to compute the HGED, and then
record the average time of computing once. From Table. II,
we can see that HGED-BFS is much faster than HGED-HEU

255

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

TABLE II
RUNNING TIME (S) OF DIFFERENT HGED COMPUTATION ALGORITHMS

Dataset | HGED-HEU | HGED-DFS | HGED-BFS
PS 0.23 0.43 0.23
HS 0.25 0.48 0.14
MO 69.3 80.23 10.3
WM 78.3 140.5 30.3

TVG 407.1 623.2 130.3
AMZ 7,308.1 8,234.3 623.8
TABLE III
RUNNING TIME (S) oOF HEP-DFS V.S. HEP-BFS
HEP-DFS | HEP-BFS LGR
PS 123.2 15.3 116.9
HS 100.3 13.2 99.5
MO 1025.2 134.7 1132.5
WM 3690.2 492.4 2332.5
TVG 9823.1 1539.3 5521.3
AMZ | > 1 day 6687.5 > 1 day

and HGED-DFS. This is because that we use three strategies
to speed up finding the minimum HGED. Note that, since the
neighbors in a hypergraph usually has a similar neighborhood,
we can set the upper bound HGED to be 10 in most situations.
HGED-HEU is slightly faster than HGED-DFS, since it not
need to enumerate the permutations of hyperedges. As can be
seen, on AMZ, HGED-DFS takes only 8,234.3 seconds and
our best algorithm HGED-BFS only consumes 623.8 seconds.
These results confirm that our proposed algorithms are indeed
very efficient on large real-life hypergraphs.

Exp-5. Running time of HEP-DFS v.s. HEP-BFS. Table III
shows the running time of HEP-DFS v.s. HEP-BFS with
A = 3,7 = 5. In addition, we also record the running time
of LGR as a baseline. We can see that in all the datasets,
the running time of LGR is much higher than HEP-BFS,
and HEP-BFS requires approximately 10%-30% of the time
of HEP-DFS on all the datasets. For example, HEP-DFS
needs approximately 3690.2 seconds and 9823.1 seconds to
compute all the (A, 7)-hyperedge in WM and TVG datasets,
but HEP-DFS only needs 492.4 and 1539.3 seconds, which
is 13.2% and 15.6% times, respectively. This is because the
pruning strategies can be easily used in Algorithm 4, and it
reduces the enumerations for the possible mappings. Note that,
both LGR and HEP-DFS cannot obtain results on AMZ in
1 day. The results above indicate that the pruning rules are
indeed very powerful in practice.

Exp-6. Running time with varying parameters. Fig. 11
shows the running time of HEP-DFS and HEP-BFS with
varying parameters on MO. We vary A from 2 to 9 (default: 3),
and 7 from 3 to 10 (default: 5). Similar results can also be
observed on the other datasets. As seen, HEP-BFS is faster
than HEP-DFS under all parameter settings. In Fig. 11(a)-(b),
the running times of HEP-DFS and HEP-BFS raise with the
parameters A and 7 are increasing. And the running time of
HEP-BFS raises quickly to inf (which is more than 2,000
seconds) while varying A. These results confirm that the time
complexity of HEP-BFS and HEP-DFS are linear w.r.t. 7 since
7 controls the termination for computing each HGED, and
exponential w.r.t. A since A controls the candidate nodes to be

-l HEP-DFS -@- HEP-BFS -l HEP-DFS —-@- HEP-BFS
2 INF 2
£1000 g
= 800 =
= =
‘E 600 E
E L
2 400 2
200
337135678 %9 0325678910
(a) vary A\ (b) vary 7
Fig. 11. Running time of different algorithms on MO with varying A, 7
HEl- HEP-DFS -@- HEP-BFS HEl- HEP-DFS -@- HEP-BFS
10000 ~20000
2 8000 215000
= 6000 @
£ .£10000
£ 4000 E
= £ 5000
2000
20% 40% 80% 100% 20% 40% 80% 100%
(@A=371=5) A=5,7r=5

Fig. 12. Scalability testings on TVG

added into the possible sets.

Exp-7. Scalability. Fig. 12 shows the scalability of HEP-DFS
and HEP-BFS on the TVG dataset with A = 3,7 = 5 and
A = 5,7 = 5. Similar results can also be observed on the
other datasets or other parameter settings. We generate ten
hypergraphs by randomly picking 10%-100% of the nodes and
the hyperedges, and evaluate the running times of HEP-DFS
and HEP-BFS on those subgraphs. As shown in Fig. 12, the
running time increases smoothly with increasing numbers of
nodes or hyperedges. These results suggest that our proposed
algorithms are scalable when handling large hypergraphs.

VII. CONCLUSION

In this work, we study the problem of predicting hyperedges
in hypergraph. We use a concept, Hypergraph Edit Distance,
to measure the similarity of two nodes. Specifically, we can
record a Hypergraph Edit Path while searching the optimal
edit distance, and this path enables to explain why one
node is similar to another node since their neighbor structure
can be edited to be isomorphic following the edit path.
We propose a heuristic DFS-based framework which can
compute the edit distance of neighbor structure for two nodes
in hypergraph. Next, to predict the multiple relations, we
introduce a hyperedge model in which the similarity of nodes
in each links are restricted by the hypergraph edit distance.
We further present an on-demand algorithm of computing
HGED, which substantially avoids redundant computations.
Finally, we conduct comprehensive experiments to show the
performance of the proposed algorithms.

ACKNOWLEDGEMENT

This work was partially supported by (i) National Key
R&D Program of China (Grant No. 2020AAA0108503);
(i) NSFC (Grant Nos. 62202053, 62072034, U1809206,
61932004, 62225203, U21A20516, 61732003 and U2001211);
(iii) CCF-Huawei Populus Grove Fund. Rong-Hua Li and
Guoren Wang are the corresponding authors of this paper.

256

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

V. Martinez, F. Berzal, and J. C. C. Talavera, “A survey of link prediction
in complex networks,” ACM Comput. Surv., vol. 49, no. 4, pp. 69:1-
69:33, 2017.

L. Lii and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A: Statistical Mechanics and its Applications, vol. 390, no. 6,
pp. 1150-1170, 2011.

B. Pandey, P. K. Bhanodia, A. Khamparia, and D. K. Pandey, “A
comprehensive survey of edge prediction in social networks: Techniques,
parameters and challenges,” Expert Systems with Applications, vol. 124,
pp. 164-181, 2019.

I. Ahmad, M. Akhtar, S. Noor, and A. Shahnaz, “Missing link prediction
using common neighbor and centrality based parameterized algorithm,”
Scientific Reports, vol. 10, p. 364, 01 2020.

T. Man, H. Shen, S. Liu, X. Jin, and X. Cheng, “Predict anchor links
across social networks via an embedding approach,” in IJCAI, 2016, pp.
1823-1829.

C. A. Bliss, M. R. Frank, C. M. Danforth, and P. S. Dodds, “An
evolutionary algorithm approach to link prediction in dynamic social
networks,” J. Comput. Sci., vol. 5, no. 5, pp. 750-764, 2014.

L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Social
Networks, vol. 25, no. 3, pp. 211-230, 2003.

T. Zhou, L. Lii, and Y.-C. Zhang, “Predicting missing links via local
information,” The European Physical Journal B - Condensed Matter
and Complex Systems, vol. 71, pp. 623-630, 10 2009.

E. Leicht, P. Holme, and M. Newman, “Vertex similarity in networks,”
Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 73,
p. 026120, 03 2006.

M. Curado, “Return random walks for link prediction,” Information
Sciences, vol. 510, pp. 99-107, 2020.

L. Backstrom and J. Leskovec, “Supervised random walks: predicting
and recommending links in social networks,” in WSDM, 1. King,
W. Nejdl, and H. Li, Eds., 2011, pp. 635-644.

S. Han and Y. Xu, “Link prediction in microblog network using
supervised learning with multiple features,” J. Comput., vol. 11, no. 1,
pp. 72-82, 2016.

C. Fu, M. Zhao, L. Fan, X. Chen, J. Chen, Z. Wu, Y. Xia, and Q. Xuan,
“Link weight prediction using supervised learning methods and its
application to yelp layered network,” IEEE Trans. Knowl. Data Eng.,
vol. 30, no. 8, pp. 1507-1518, 2018.

Z. Lu, B. Savas, W. Tang, and I. S. Dhillon, “Supervised link prediction
using multiple sources,” in /CDM, 2010, pp. 923-928.

D. Luo and H. Huang, “Link prediction of multimedia social network via
unsupervised face recognition,” in ACM Multimedia, 2009, pp. 805-808.
K. Li, N. Du, and A. Zhang, “A link prediction based unsupervised rank
aggregation algorithm for informative gene selection,” in BIBM, 2012,

pp. 1-6.

257

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

T. Kuo, R. Yan, Y. Huang, P. Kung, and S. Lin, “Unsupervised
link prediction using aggregative statistics on heterogeneous social
networks,” in KDD, 2013, pp. 775-783.

C. P. M. T. Muniz, R. R. Goldschmidt, and R. Choren, “Combining
contextual, temporal and topological information for unsupervised link
prediction in social networks,” Knowl. Based Syst., vol. 156, pp. 129-
137, 2018.

R. Abdolazimi and R. Zafarani, “Noise-enhanced unsupervised link
prediction,” in PAKDD, vol. 12712, 2021, pp. 472-487.

S. Yoon, H. Song, K. Shin, and Y. Yi, “How much and when do we need
higher-order informationin hypergraphs? A case study on hyperedge
prediction,” in WWW, 2020, pp. 2627-2633.

T. Kumar, K. Darwin, S. Parthasarathy, and B. Ravindran, “HPRA:
hyperedge prediction using resource allocation,” in WebSci, 2020, pp.
135-143.

X. Sun, H. Yin, B. Liu, H. Chen, Q. Meng, W. Han, and J. Cao, “Multi-
level hyperedge distillation for social linking prediction on sparsely
observed networks,” in WWW, 2021, pp. 2934-2945.

M. Zhang, Z. Cui, S. Jiang, and Y. Chen, “Beyond link prediction:
Predicting hyperlinks in adjacency space,” in AAAI, 2018, pp. 4430-
4437.

J. Lugo-Martinez, D. Zeiberg, T. Gaudelet, N. Malod-Dognin,
N. Przulj, and P. Radivojac, “Classification in biological networks with
hypergraphlet kernels,” Bioinformatics, vol. 37, no. 7, pp. 1000-1007,
09 2020.

A. Sanfeliu and K.-S. Fu, “A distance measure between attributed
relational graphs for pattern recognition,” IEEE Transactions on Systems,
Man and Cybernetics, vol. SMC-13, 06 1983.

H. Bunke, P. J. Dickinson, M. Kraetzl, M. Neuhaus, and M. Stettler,
“Matching of hypergraphs - algorithms, applications, and experiments,”
in Applied Pattern Recognition, ser. Studies in Computational
Intelligence. Springer, 2008, vol. 91, pp. 131-154.

X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa, “Efficient
processing of graph similarity queries with edit distance constraints,”
VLDB J., vol. 22, no. 6, pp. 727-752, 2013.

Y. Liang and P. Zhao, “Similarity search in graph databases: A multi-
layered indexing approach,” in ICDE, 2017, pp. 783-794.

X. Zhao, C. Xiao, X. Lin, Q. Liu, and W. Zhang, “A partition-based
approach to structure similarity search,” Proc. VLDB Endow., vol. 7,
no. 3, pp. 169-180, 2013.

L. Chang, X. Feng, X. Lin, L. Qin, W. Zhang, and D. Ouyang, “Speeding
up GED verification for graph similarity search,” in ICDE, 2020, pp.
793-804.

M. Jiang, J. Shang, T. Cassidy, X. Ren, L. M. Kaplan, T. P. Hanratty, and
J. Han, “Metapad: Meta pattern discovery from massive text corpora,’
in SIGKDD, 2017, pp. 877-886.

J. Shang, J. Liu, M. Jiang, X. Ren, C. R. Voss, and J. Han, “Automated
phrase mining from massive text corpora,” CoRR, vol. abs/1702.04457,
2017.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:00:17 UTC from IEEE Xplore. Restrictions apply.

