
The VLDB Journal (2017) 26:751–776
DOI 10.1007/s00778-017-0467-4

REGULAR PAPER

Finding influential communities in massive networks

Rong-Hua Li1 · Lu Qin2 · Jeffrey Xu Yu3 · Rui Mao1

Received: 1 June 2016 / Revised: 6 May 2017 / Accepted: 16 May 2017 / Published online: 30 May 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Community search is a problemoffindingdensely
connected subgraphs that satisfy the query conditions in a
network, which has attracted much attention in recent years.
However, all the previous studies on community search do
not consider the influence of a community. In this paper, we
introduce a novel communitymodel called k-influential com-
munity based on the concept of k-core to capture the influence
of a community. Based on this community model, we pro-
pose a linear time online search algorithm to find the top-r
k-influential communities in a network. To further speed up
the influential community search algorithm, we devise a lin-
ear space data structure which supports efficient search of
the top-r k-influential communities in optimal time. We also
propose an efficient algorithm to maintain the data structure
when the network is frequently updated. Additionally, we
propose a novel I/O-efficient algorithm to find the top-r k-
influential communities in a disk-resident graph under the
assumption of U = O(n), where U and n denote the size
of the main memory and the number of nodes, respectively.
Finally, we conduct extensive experiments on six real-world

B Jeffrey Xu Yu
yu@se.cuhk.edu.cn

B Rui Mao
mao@szu.edu.cn

Rong-Hua Li
rhli@szu.edu.cn

Lu Qin
Lu.Qin@uts.edu.au

1 College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China

2 Centre for QCIS, FEIT, University of Technology, Sydney,
Australia

3 The Chinese University of Hong Kong, Hong Kong, China

massive networks, and the results demonstrate the efficiency
and effectiveness of the proposed methods.

Keywords Influential community · Core decomposition ·
Tree-shape data structure · Dynamic graph · I/O-efficient
algorithm

1 Introduction

Many real-world networks, such as social networks and bio-
logical networks, contain community structures.Discovering
communities in a network is a fundamental problem in net-
work science, which has attracted much attention in recent
years [13,30]. Another related but different problem is com-
munity search where the goal is to find the most likely
community that contains the query node [11,25]. The main
difference between these two problems is that the community
discovery problem is to identify all communities in a net-
work by optimizing some pre-defined criterions [13], while
the community search problem is a query-dependent variant
of the community discovery problem, which aims to find the
community that contains the query node [25].

In all the previous studies on these problems, a com-
munity is defined as a densely connected subgraph which
ignores another important aspect, namely the influence (or
importance) of a community. However, in many application
domains, we are interested in finding the most influential
communities. For example, in the co-authorship network,
we may want to find the well-connected communities that
contain many highly cited researchers, as these communi-
ties play the leading roles in their corresponding research
areas. In the web graph, we may wish to discover the densely
connected subgraphs that include many high PageRank web
pages, because these dense subgraphs hold a broad catalog of
authoritative information that the web users want to find. In

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0467-4&domain=pdf

752 R.-H. Li et al.

the social network, we would like to detect the cohesive sub-
groups that consist of many celebrities, as these subgroups
act important roles for information dissemination and spread
over the network.

In this paper, we study, for the first time, the influential
community search problem in large networks. To study this
issue,wepresent a newcommunitymodel called k-influential
community based on the well-known concept of k-core [24].
In our definition, we model a network as an undirected graph
G = (V, E) where each node in G is associated with a
weight, denoting the influence (or importance) of the node.
A community is defined as a connected induced subgraph in
which each node has a degree at least k, where the parameter
k measures the cohesiveness of the community. Unlike the
traditional definition of k-core [24], our definition of com-
munity is not necessary the maximal induced subgraph that
satisfies such a degree constraint (i.e., each node has degree at
least k). The influence value of a community is defined as the
minimum weight of the nodes in that community. An influ-
ential community is one that has a large influence value. We
call an influential communitywith parameter k a k-influential
community.

The intuition behind our definition is that each node in an
influential community should have a large weight, indicating
that every member in an influential community is an influ-
ential individual. Another possible measure of influence of
a community is the average weight of all the nodes. How-
ever, this measure has a drawback that it is not robust to the
outliers, because by this measure, an influential community
with a high average weight may include some low-weight
nodes (outliers) which are not influential. Therefore, in this
paper, we use the minimum weight to measure the influ-
ence value of a community, as it captures the intuitive idea
of influential community. In addition, we require that a k-
influential community cannot be contained in a k-influential
super-communitywith equivalent influence value. Because if
that is the case, the latterwill dominate the former onboth size
and influence value. Based on this novel k-influential com-
munity model, the goal of the influential community search
problem is to find the top-r k-influential communities with
the highest influence value in a network.

Straightforward searching the top-r k-influential commu-
nities in a large network is impractical, because there could
be a large number of communities that satisfy the degree con-
straint, and for each community, we need to check whether it
is a k-influential community. By an in-depth analysis of the
structure of k-influential communities, we discover that all
the k-influential communities can be obtained by iteratively
deleting the smallest weight node of the maximal k-core
(Here the maximal k-core means that there is no super-graph
that is also a k-core). Based on this finding, we propose a
depth-first-search (DFS)-based algorithm to search the top-r
k-influential communities online. We show that the DFS-

based algorithm consumes linear time and space with respect
to (w.r.t.) the graph size.

For very large graphs, however, the linear timeDFS-based
algorithm is still inefficient. To further accelerate the influ-
ential community search algorithm, we design a novel data
structure, called influential community-preserved structure
(ICPS), to store all the pre-calculated k-influential commu-
nities. The ICPS preserves all the k-influential communities,
and it takes only linear space w.r.t. the graph size. Based
on the ICPS, the query of the top-r k-influential commu-
nities can be computed in linear time w.r.t. the answer size
only; thus, it is optimal. To construct the ICPS, we devise an
efficient algorithm that takes O(ρm) time and O(m) space,
where ρ and m denote the arboricity [8] and the number of
edges of a graph, respectively. The arboricity of a graph is
the minimum number of spanning forests that are needed to
cover all the edges of the graph. Note that the arboricity of a
graph is no larger than O(

√
m) even in theworst-case [8], and

it has shown to be much smaller than the worst case bound
in many real-world sparse graphs [15,20]. When the graph
is frequently updated, we also propose an efficient algorithm
to incrementally maintain the ICPS. In addition, when the
graph cannot be stored in the main memory, we develop a
novel I/O-efficient algorithm to find the top-r k-influential
communities under the assumption of U = O(n), where U
and n denote the size of the main memory and the number of
nodes respectively. The I/O cost of the proposed algorithm is
O(sort (m)), where sort (m) denotes the I/O cost to sort the
edges of a graph using the standard external sort algorithm.
More details of the I/O-efficient algorithm can be found in
Sect. 6.

We conduct extensive experiments over six web-scale
real-world graphs to evaluate the efficiency of the proposed
algorithms. The results show that the ICPS-based algorithm
is several orders of magnitude faster than the DFS-based
online search algorithm. The query time of the ICPS-based
algorithm is from one millisecond for small k and r to a few
seconds for large k and r in four large graphs with more than
one billion edges. Moreover, the results show that the ICPS
is compact and can be constructed efficiently. The results
also indicate that the proposed ICPSmaintenance algorithm
is very efficient which is at least four orders of magnitude
faster than the baseline algorithm in large graphs. When the
memory size is limited, the results show that our I/O-efficient
algorithm can create the ICPS in reasonable time, and the
query processing timeof our I/O-efficient algorithm is around
one second in web-scale graphs. In addition, we also con-
duct comprehensive case studies on a co-authorship network
to evaluate the effectiveness of the k-influential community
model. The results demonstrate that using our community
model is capable of finding meaningful influential commu-
nities in a network, which cannot be identified by using the
k-truss community model [16].

123

Finding influential communities in massive networks 753

The rest of this paper is organized as follows. We for-
mulate the influential community search problem in Sect. 2.
The DFS-based algorithm is presented in Sect. 3. We design
a new ICPS and propose two ICPS construction algorithms
in Sect. 4. We devise an efficient ICPS update algorithm in
Sect. 5. We propose the I/O-efficient algorithm in Sect. 6.
Extensive experiments are reported in Sect. 7. We review
related work and conclude this paper in Sects. 8 and 9,
respectively.

2 Problem statement

Consider an undirected graph G = (V, E), where V and
E denote the node set and edge set, respectively. Denote by
n = |V | the number of nodes and by m = |E | the number of
edges in G. Let d(v,G) be the degree of a node v in graph
G. A graph H = (VH , EH) is an induced subgraph of G if
VH ⊆ V and EH = {(u, v)|u, v ∈ VH , (u, v) ∈ E}. In this
paper, we refer to an induced subgraph H such that each node
v in H has degree at least k (i.e., d(v, H) ≥ k) as a k-core.
The maximal k-core H ′ is a k-core that no super-graph H of
H ′ is also a k-core. Note that the maximal k-core of a graph
G is unique and can be a disconnected graph. For a node
u ∈ V , the core number of u, denoted by cu , is the maximal
k value such that a k-core contains u.

In the literature, the maximal k-core is widely used to rep-
resent cohesive communities of a graph [2,5,19,25]. Instead
of general cohesive communities, in this work, we seek to
find influential communities in a graph. Specifically, in our
setting, each node u inG has a weightwu (such as PageRank
or any other user-defined attributes), indicating the influence
(or importance) of u. Additionally, we assume without loss
of generality that the weight vector W = (w1, w2, . . . , wn)

forms a total order, i.e., for any two nodes vi and v j , if i �= j ,
then wi �= w j . Note that if that is not the case, we use the
node identity to break ties for any wi = w j . Before proceed-
ing further, we give the definition of influence value of an
induced subgraph as follows.

Definition 1 Given an undirected graph G = (V, E) and an
induced subgraph H = (VH , EH) of G, the influence value
of H denoted by f (H) is defined as the minimum weight of
the nodes in H , i.e., f (H) = minu∈VH {wu}.

By Definition 1, if the influence value of an induced sub-
graph H (i.e., f (H)) is large, then the weight of every node
in H should be a large value, indicating that H is an influen-
tial subgraph. Below, we give a brief discussion of why we
define f as the minimum weight of the nodes. Regarding the
choice of f (H), we need to consider functions that capture
the influence (weight) of nodes in H . Moreover, we want
the influence value f (H) to be a large value if the induced
subgraph H is influential. Except the minimumweight of the

nodes in H , one potential definition of f (H) is the average
weight of the nodes in H , i.e., f (H) = ∑

u∈VH
wu/|VH |.

However, this definition has a drawback that it is not robust
to outliers. Specifically, by this definition, an influential sub-
graphmay include low-weight nodes (outliers), albeit it has a
high average weight. Another potential definition of f (H) is
the median of the weights of all the nodes in H . However, the
community based on this definition may also include many
low-weight nodes. For example, suppose that the community
H includes 100 nodes, and there are 51 nodes in H that have
weights larger than 1000, and the remaining 49 nodes have
weights smaller than 10. Clearly, the median is high (≥1000)
in this example, but H contains too many low-weight nodes.
In this paper, we define f (H) as the minimum weight of
nodes in H based on the following reasons. First, it is robust
to the low-weight nodes. Second, it admits an elegant algo-
rithmic framework to solve the influential community search
problem (see Sects. 3 and 4). Third, using the definition of
the minimum weight can effectively find influential commu-
nities as shown in our experiments (see Sect. 7).

Intuitively, an influential community should not only have
a large influence value, but it is also a cohesive induced
subgraph. Based on this intuition, we give the definition of
k-influential community, where the parameter k controls the
cohesiveness of the community.

Definition 2 Given an undirected graph G = (V, E) and
an integer k. A k-influential community is an induced sub-
graph Hk = (V k

H , Ek
H) of G that meets all the following

constraints.

– Connectivity: Hk is connected;
– Cohesiveness: each node u in Hk has degree at least k;
– Maximal structure: there is no other induced subgraph H̃
such that (1) H̃ satisfies connectivity and cohesiveness
constraints, (2) H̃ contains Hk , and (3) f (H̃) = f (Hk).

Clearly, the cohesiveness constraint indicates that the k-
influential community is a k-core. With the connectivity
and cohesiveness constraints, we can ensure that the k-
influential community is a connected and cohesive subgraph.
And with the maximal structure constraint, we can guaran-
tee that any k-influential community cannot be contained in
a k-influential super-community with equivalent influence
value. The following example illustrates the definition of k-
influential community.

Example 1 Consider the graph shown in Fig. 1. Suppose,
for instance, that k = 2, then by definition the subgraph
induced bynode set {v12, v13, v14, v15} is a 2-influential com-
munity with influence value 12, as it meets all the constraints
in Definition 2. Note that the subgraph induced by node
set {v12, v14, v15} is not a 2-influential community. This is
because it is contained in a 2-influential community induced

123

754 R.-H. Li et al.

by node set {v12, v13, v14, v15} whose influence value equals
its influence value, thus fail to satisfy the maximal structure
constraint. �	

In many practical applications, we are typically interested
in the most influential communities whose influence values
are larger than those of all other influential communities. In
this paper, we aim to find such communities in a large graph
efficiently. Below, we formulate two influential community
search problems.

Problem 1 Given a graph G = (V, E), a weight vector
W , and two parameters k and r , the problem is to find the
top-r k-influential communities with the highest influence
value. Formally, let Hk = {Hk(1), Hk(2), . . . , Hk(l)} be
the complete set of k-influential communities. If l ≥ r , the
problem is to find a subset Rk = {Hk(i1), . . . , Hk(ir)} of
Hk with cardinality r such that for any k-influential commu-
nity Hk in Hk but not in Rk (i.e., Hk ∈ Hk\Rk), we have
f (Hk) ≤ f (Hk(i j)) for any Hk(i j) ∈ Rk . Otherwise, the
problem outputs the complete set of k-influential communi-
ties, i.e., Hk .

For Problem 1, a k-influential community may be con-
tained in another k-influential community in the top-r results.
For example, in Fig. 1, we can easily verify that the top-
2 2-influential communities are the subgraphs induced by
{v13, v14, v15} and {v12, v13, v14, v15}, respectively. Clearly,
in this example, the second 2-influential community contains
the first 2-influential community. To avoid the inclusion rela-
tionships in the top-r results, in the following, we consider
a problem of finding the top-r non-containing k-influential
communities.

Definition 3 Given a graph G = (V, E) and an integer k.
A non-containing k-influential community Hk = (V k

H , Ek
H)

is a k-influential community that meets the following con-
straint.

– Non-containment: Hk cannot contain a k-influential
community H̄ k such that f (H̄ k) > f (Hk).

We illustrate Definition 3 in the following example.

13 13V

12
12V

14 14V

15 15V

1
1V

2 2V

3 3V

4
4V

5
5V

8
8V

9
9V

10V10

6
6V

7
7V

11V11

Fig. 1 Running example (the numbers denote the weights)

Example 2 Let us reconsider the graph shown in Fig. 1.
Assume that k = 2. By Definition 3, we can see that
the subgraphs induced by {v3, v4, v5}, {v8, v9, v11} and
{v13, v14, v15} are non-containing 2-influential communi-
ties. However, the subgraph induced by {v12, v13, v14, v15}
is not a non-containing 2-influential community, because it
includes a 2-influential community (the subgraph induced by
{v13, v14, v15}) with a larger influence value. �	

Problem 2 Given a graph G = (V, E), a weight vector W ,
and parameters k and r , the problem is to find the top-r
non-containing k-influential communities with the highest
influence value. Here, the definition of top-r is similar to the
definition given in Problem 1.

Note that with the Non-containment constraint, there
is no inclusion relationship in the top-r non-containing
k-influential communities; thus, no redundant results are
introduced. In other words, Problem 2 tends to find the sub-
communities if they haver larger influence values than their
corresponding super-communities.

Challenges A k-influential community is different from the
maximal k-core in two aspects. First, a k-influential commu-
nity must be a connected subgraph, whereas the maximal
k-core does not impose such a constraint. Second, with
the maximal structure constraint, a k-influential commu-
nity Hk requires that there is no super-graph of Hk which
is a connected k-core with influence value equivalent to
f (Hk). However, the maximal k-core H only requires that
there is no super-graph of H which is also a k-core. For a
non-containing k-influential community, it further imposes a
non-containment constraint. Due to these differences, given
a graph G, the maximal k-core of G is unique, whereas there
are multiple (non-containing) k-influential communities in
G. Thus, themethods for computing themaximal k-core can-
not be directly used for computing the top-r (non-containing)
k-influential communities.

A straightforward method to compute the top-r (non-
containing) k-influential communities is first to compute
the set of subgraphs that satisfy the connectivity and
cohesiveness constraints. For each subgraph, we further
check whether it satisfies the maximal structure constraint
and the non-containment constraint (for non-containing k-
influential communities). Finally, the top-r (non-containing)
k-influential communities with the highest influence value
are returned. Obviously, such amethod is inefficient since the
number of potential subgraphs that satisfy the connectivity
and cohesiveness constraints can be exponentially large, and
for each potential subgraph, we need to check the maximal
structure constraint, which is costly. In the following sec-
tions, we will present several efficient algorithms to tackle
these challenges.

123

Finding influential communities in massive networks 755

3 Online search algorithms

In this section, we focus on developing online search algo-
rithms for Problem 1 and then discuss how to generalize the
proposed algorithms for Problem 2. Note that we refer to
our algorithms proposed in this section as the online search
algorithms because all the algorithms do not require any pre-
computations. In the following section, we will propose a
new algorithm that is based on a pre-computed data structure.
Before we proceed further, we give three useful lemmas as
follows.

Lemma 1 For any graph G, each maximal connected com-
ponent of the maximal k-core of G is a k-influential commu-
nity.

Proof The proof can be easily obtained by definition. �	
Lemma 2 For any k-influential community Hk =(V k

H , Ek
H),

if we delete the smallest weight node in Hk and the resulting
subgraph still contains a k-core, each maximal connected
component of the maximal k-core in the resulting graph,
denoted by Ck = (V k

C , Ek
C), is a k-influential community.

Proof Without loss of generality, we consider a maximal
connected component (MCC) of Ck . The following argu-
ments hold for each MCC of Ck . In particular, we let
C̄k = (V k

C̄
, Ek

C̄
) be a MCC of Ck . First, C̄k satisfies the

connectivity constraint. Second, by the definition of maximal
k-core, C̄k satisfies the cohesiveness constraint. Finally, we
show that C̄k also meets the maximal structure constraint.
We prove it by contradiction. Suppose to the contrary that
there is an induced subgraph C̃ = (VC̃ , EC̃) such that (1)
C̃ satisfies connectivity and cohesiveness constraints, (2)
C̃ contains C̄k , and (3) f (C̃) = f (C̄k). Further, we have
that f (C̃) = f (C̄k) ≥ f (Ck) > f (Hk), because Ck is
obtained after deleting the smallest weight node in Hk . By
f (C̃) > f (Hk), we can conclude that C̃ does not contain
Hk . Then, we can construct a subgraph H̃ k = (V k

H̃
, Ek

H̃
)

which is induced by the nodes in VC̃ ∪ V k
H . Since both

the induced subgraphs C̃ and Hk satisfy the cohesiveness
constraint, thus H̃ k also meets the cohesiveness constraint.
Moreover, we know that C̄k is a subgraph of both C̃ and Hk .
Since both C̃ and Hk are connected induced subgraphs and
VC̃ ∩V k

H is nonempty, H̃ k , which is the union of C̃ and Hk , is
also a connected induced subgraph. As a result, the induced
subgraph H̃ k satisfies cohesiveness and cohesiveness con-
straint, and H̃ k contains Hk . Moreover, by our definition,
f (H̃ k) = minu∈VC̃∪V k

H
{wu} = minu∈V k

H
{wu} = f (Hk),

where the second equality is due to f (C̃) > f (Hk). Thus,
we obtain that Hk does not meet the maximal structure con-
straint, which is a contradiction. Putting it all together, we
can conclude that C̄k is a k-influential community. �	

Algorithm 1 The basic algorithm
Input: G = (V, E), W , r , and k
Output: The top-r k-influential communities
1: G0 ← G, i ← 0;
2: while Gi contains a k-core do
3: Compute the maximal k-core Ck(Gi);
4: Let Hk(i) be the maximal connected component of Ck(Gi) with

the smallest influence value;
5: Let u be the smallest-weight node in Hk(i);
6: Delete u;
7: Let Gi+1 be a subgraph of Ck(Gi) after deleting u;
8: i ← i + 1;
9: Output Hk(i −1), · · · , Hk(i −r) if i ≥ r , otherwise output Hk(i −

1), · · · , Hk(0).

Lemma 3 For any k-influential community Hk =(V k
H , Ek

H),
if we delete the node in Hk with the smallest weight and the
resulting subgraph does not contain a k-core, then Hk is a
non-containing k-influential community.

Proof The proof can be easily obtained by definition. �	
Based on the above lemmas, we are ready to devise effi-

cient algorithms for Problems 1 and 2. Below, we first
develop a basic algorithm for our problems and then propose
an optimized algorithm based on depth-first-search (DFS),
which is much more efficient than the basic one.

3.1 The basic algorithm

The basic idea of our algorithm is described below. First, for
a given k, we compute the maximal k-core of the graph G
denoted byCk(G). Then, we iteratively invoke the following
procedure until the resulting graph does not contain a k-core.
The procedure consists of two steps. Let Gi be the resulting
graph in the i-th iteration, andCk(Gi) be the maximal k-core
of Gi . The first step is to delete the smallest weight node in
Ck(Gi−1), which results in a graph Gi . The second step is
to compute the maximal k-core Ck(Gi) of Gi . The detailed
description is outlined in Algorithm 1.

Below, we first show that all the Hk(j) (0 ≤ j ≤
i − 1) obtained by Algorithm 1 are k-influential communi-
ties. Then, based on this fact, we will prove that Algorithm 1
correctly outputs the top-r k-influential communities in The-
orem 2.

Theorem 1 Let Hk = {Hk(0), . . . , Hk(i − 1)} be a set
including all the Hk(j) (0 ≤ j ≤ i − 1) obtained by Algo-
rithm 1. Then, for 0 ≤ j ≤ i − 1, Hk(j) is a k-influential
community.

Proof The proof can be easily obtained based on Lemmas 1
and 2. �	
Theorem 2 Algorithm 1 correctly finds the top-r k-
influential communities.

123

756 R.-H. Li et al.

Proof By Algorithm 1, Hk(j + 1) is obtained after deleting
the smallest weight node in the maximal k-core that includes
Hk(j); thus, we have f (Hk(j)) ≥ f (Hk(j + 1)) for
0 ≤ j ≤ i − 2. Recall that we have assumed without loss of
generality that the weight vectorW forms a total order. Thus,
we have f (Hk(0)) < f (Hk(1)) < · · · < f (Hk(i − 1)).
To prove the theorem, it remains to show that the set Hk

includes all the k-influential communities in G. We prove
it by contradiction. Suppose to the contrary that there is a
k-influential community H̃ k such that H̃ k /∈ Hk . On the
one hand, since H̃ k is a k-influential community, it meets
the connectivity and cohesiveness constraints, and therefore,
it must be contained in a maximal connected component
(MCC) of the maximal k-core of G (i.e., Ck(G0)). Since
Hk(0) is the MCC of Ck(G0) with the smallest influence
value, we have f (H̃ k) > f (Hk(0)). On the other hand,
we have f (H̃ k) < f (Hk(i − 1)). The reason is as fol-
lows. By our algorithm, if we delete the smallest weight
node in Hk(i − 1), there is no k-core in Gi ; thus, there is
no k-influential community whose influence value is larger
than f (Hk(i −1)). As a consequence, we have f (Hk(0)) <

f (H̃ k) < f (Hk(i − 1)). Since f (Hk(0)) < f (Hk(1)) <

· · · < f (Hk(i − 1)), there must be a j (0 ≤ j < i − 1) such
that f (Hk(j)) < f (H̃ k) < f (Hk(j + 1)). Note that after
deleting the smallest weight node u in Hk(j), the algorithm
obtains a subgraph G j+1. Since f (Hk(j)) < f (H̃ k), the
subgraph H̃ k is still contained in G j+1. However, after this
deletion operation, the algorithm obtains Hk(j + 1) which
is the k-influential community with the smallest influence
value. Thus, we have f (H̃ k) > f (Hk(j + 1)), which con-
tradicts to f (H̃ k) < f (Hk(j + 1)). Hence, Hk includes all
the k-influential communities in G. Putting it all together,
we conclude that Algorithm 1 correctly outputs the top-r
k-influential communities. �	

By Theorem 2, we have a corollary as shown below.

Corollary 1 Given a graph G with n nodes. The number of
k-influential communities in G is bounded by n.

Proof Recall that in Algorithm 1, each k-influential com-
munity except Hk(0) is obtained by deleting one node in G.
Since there are n nodes in G, the number of k-influential
communities in G is bounded by n. �	

We analyze the time and space complexity of Algorithm 1
in the following theorem.

Theorem 3 The time complexity of Algorithm 1 is O(Nkm)

bounded by O(nm), where Nk denotes the number of k-
influential communities. The space complexity of Algorithm 1
is O(n + m).

Proof In each iteration, the most time-consuming step is to
compute the maximal k-core which takes O(m) time com-
plexity [2]. There is O(Nk) iterations in total, because in

each iteration Algorithm 1 computes one k-influential com-
munity. As a consequence, the total time cost of Algorithm 1
is O(Nkm). Note that by Corollary 1, for every k, O(Nk) is
bounded byO(n), thusO(Nkm) is bounded byO(nm). Also,
we can easily derive that the space complexity ofAlgorithm1
is O(m + n). �	

Note that we can slightly modify Algorithm 1 to obtain
the top-r non-containing k-influential communities. Specif-
ically, we only need to add one line behind line 6 in
Algorithm 1 to check whether Hk(i) includes a k-core or
not. If Hk(i) does not include a k-core, then by Lemma 3,
Hk(i) is a non-containing k-influential community, and we
mark such a Hk(i) as a candidate result. Finally, in line 9,
we only output the top-r results that are marked as candidate
results. It is easy to show that the time and space complexity
of this algorithm is the same as those of Algorithm 1.

3.2 The DFS-based algorithm

As shown in the previous subsection, Algorithm 1 is very
expensive which is clearly impractical for most real-world
graphs. Here, we present a much more efficient algorithm
based on depth-first-search (DFS). The detailed descrip-
tion of the algorithm is shown in Algorithm 2. Similar to
Algorithm 1, Algorithm 2 also iteratively computes the k-
influential communities one by one. Unlike Algorithm 1,
in each iteration, Algorithm 2 does not recompute the
maximal k-core. Instead, in each iteration, Algorithm 2
recursively deletes all the nodes that are definitely excluded
in the subsequent k-influential communities. In particular,
when Algorithm 2 deletes the smallest weight node in the
k-influential community Hk(i) (line 6), the algorithm recur-
sively deletes all the nodes that violate the cohesiveness
constraint by a DFS procedure (lines 9–14). This is because,
whenwe delete the smallest weight node u, the degrees of u’s
neighbor nodes decrease by 1. Thismay result in that some of
u’s neighbors violate the cohesiveness constraint; thus, they
cannot be included in the subsequent k-influential commu-
nities, and therefore, we have to delete them. Similarly, we
also need to verify the other hop (e.g., 2-hop, 3-hop, etc.)
neighbors whether they satisfy the cohesiveness constraint.
Clearly, we can use a DFS procedure to identify and delete
all those nodes. The correctness of Algorithm 2 is shown in
Theorem 4.

Theorem 4 Algorithm 2 correctly finds the top-r k-influen-
tial communities.

Proof Since Algorithm 1 is correct, to prove the theorem, we
only need to show that in the iteration i of Algorithm 2, the
resulting subgraph Ck(G) before invoking DFS(u) (line 6 in
Algorithm2) is themaximal k-coreCk(Gi)of the graphGi in
Algorithm 1.We prove it by induction. First, when i = 0, we

123

Finding influential communities in massive networks 757

Algorithm 2 The DFS-based algorithm
Input: G = (V, E), W , r , and k
Output: The top-r k-influential communities
1: i ← 0;
2: Compute the maximal k-core Ck(G) of G;
3: while Ck(G) �= ∅ do
4: Let Hk(i) be the maximal connected component of Ck(G) with

the smallest influence value;
5: Let u be the node with the smallest weight in Hk(i);
6: DFS(u);
7: i ← i + 1;
8: Output Hk(i), · · · , Hk(i − r + 1) if i ≥ r , otherwise output

Hk(i), · · · , Hk(1).

9: Procedure DFS (u)
10: for all v ∈ N (u,Ck(G)) do
11: Delete edge (u, v) from Ck(G);
12: if d(v,Ck(G)) < k then
13: DFS(v);
14: Delete node u from Ck(G);

have Ck(G) = Ck(G0). Second, assume that in the iteration
i of Algorithm 2, we have Ck(G) = Ck(Gi). Then, in the
iteration i + 1 of Algorithm 2, Ck(G) will be updated after
invoking DFS(u), where u is the smallest weight node. To
avoid confusion, we denote the updated Ck(G) by C̃k(G).
Our goal is to show C̃k(G) = Ck(Gi+1). In Algorithm 2,
DFS(u) recursively deletes all the nodes whose degrees are
smaller than k. When DFS(u) terminates, the resulting sub-
graph C̃k(G) is a k-core, because every node in the resulting
subgraph has a degree at least k. We claim that this k-core is
the maximal k-core of the subgraph Ck(G)\u. We prove this
claim by a contradiction. Suppose to the contrary that there is
another k-core C̄k of Ck(G)\u with |C̄k | > |C̃k(G)|. Then,
there is a node v ∈ C̄k and v /∈ C̃k(G). Since v is in a k-
core of Ck(G)\u, v’s degree is no less than k after invoking
DFS(u). Otherwise, v cannot be included in any k-core of
Ck(G)\u. Note that by Algorithm 2, such a node v must be
included in C̃k(G), which contradicts to v /∈ C̃k(G). There-
fore, C̃k(G) is the maximal k-core ofCk(G)\u. On the other
hand, in Algorithm 1, Ck(Gi+1) is obtained by first deleting
u from Ck(Gi) = Ck(G) (induction assumption) and then
computing the maximal k-core. Thus, we can conclude that
C̃k(G) = Ck(Gi+1). �	

Weanalyze the complexity ofAlgorithm2 in the following
theorem.

Theorem 5 The time complexity and space complexity of
Algorithm 2 are both O(m + n).

Proof First, we can pre-compute all the maximal k-cores of
G for every k by anO(m)-time core decomposition algorithm
[2]. Second, we can sort all the nodes based on their weights
in advance; thus, getting the smallest weight node (line 5)
can be done in constant time. Third, in the “while loop” of
Algorithm 2, the most time-consuming step is to invoke the

procedure DFS(u). For each edge (u, v) ∈ E , Algorithm 2
only visits it once in the DFS procedure. This is because,
when the algorithm visits an edge, the algorithm will delete
it (line 11), and this edge will no longer be visited in the
subsequent DFS steps. Therefore, the total time cost taken in
all the DFS steps is bounded by the number of edges. As a
result, the time complexity of Algorithm 2 is O(m + n). The
algorithm only needs to store the graph G and maintains the
k-core Ck(G) and a sorted node list, which uses O(m + n)

space complexity. �	
Similarly, we can easily modify Algorithm 2 for Prob-

lem 2. In particular, we only need to add one line behind
line 6 in Algorithm 2 to check whether all nodes in Hk(i) are
deleted or not. If that is the case, Hk(i) is a non-containing
k-influential community (by Lemma 3), and we mark such a
Hk(i) as a candidate result. Finally, in line 8, we only output
the top-r results that are marked. It is easy to show that the
time complexity and space complexity of this algorithm are
the same as those of Algorithm 2.

4 ICPS-based search algorithms

Although Algorithm 2 is much more efficient than Algo-
rithm 1, it takes O(m + n) time for each query which is still
inefficient for very large graphs. In this section, we present
a much more efficient algorithm whose time complexity is
proportional to the size of the top-r results; thus, it is opti-
mal. The general idea is that the algorithm first pre-computes
all k-influential communities for every k and then uses a
space-efficient data structure to store all such k-influential
communities in memory. Based on this data structure, the
algorithm outputs the top-r results in optimal time. The chal-
lenges of this algorithm are twofold: (1) how to devise a
space-efficient structure to store all the k-influential commu-
nities and (2) how to efficiently construct such a structure.
This is because there could be O(n) k-influential commu-
nities for each k (see Corollary 1), and thus, there could be
O(kmaxn) k-influential communities in total, where kmax is
the maximal core number of the nodes in G. Obviously, it
is impractical to directly store all such k-influential com-
munities for very large graphs. To tackle these challenges,
we will present a novel linear space structure, called influen-
tial community-preserved structure (ICPS), to compress and
store all the k-influential communities, and then, we propose
two algorithms to efficiently construct the ICPS.

4.1 The influential community-preserved structure
(ICPS)

The idea of the ICPS is based on the following observation.
Observation For each k, the k-influential communities form

123

758 R.-H. Li et al.

an inclusion relationship. Based on such an inclusion rela-
tionship, all the k-influential communities can be organized
by a tree-shape (or a forest-shape) structure.

Recall that Lemma 2 implies an inclusion relationship in
the k-influential communities. More specifically, based on
Lemma 2, we can see that a k-influential community Hk con-
tains all k-influential sub-communities which are the MCCs
of the maximal k-core of Hk\{u}, where u is the smallest
weight node in Hk . Note that all these k-influential sub-
communities are disjoint, because they are different MCCs.
Clearly, we can use a two-level tree structure to character-
ize the inclusion relationships among all these k-influential
communities. The parent vertex is Hk , and each child vertex
is a MCC of the maximal k-core of Hk\{u} which is also a
k-influential community. Note that the result of Lemma 2 can
be recursively applied in each k-influential sub-community.
Thus, we can obtain a tree structure for an initial k-influential
community, where each vertex of the tree corresponds to
a k-influential community. To organize all the k-influential
communities of a graphG, we can set the initial k-influential
communities as the MCCs of the maximal k-core of G. As a
consequence, we are able to use a tree (or forest1) structure
to organize all the k-influential communities, where the root
vertex of a tree is a MCC of the maximal k-core of G. Addi-
tionally, by Lemma 3, it is easy to see that each leaf vertex
in such a tree corresponds to a non-containing k-influential
community. To avoid confusion, in the rest of this paper, we
use the term vertex to denote a node in a tree.

Compression method Based on the inclusion relationship
between the parent vertex and child vertex in the tree (or
forest) structure, we can compress all k-influential commu-
nities. Our compression solution is described as follows.
For each non-leaf vertex in the tree which corresponds
to a k-influential community, we only store the nodes of
the k-influential community that are not included in it’s k-
influential sub-communities (i.e, it’s child vertices in the
tree). The same idea is recursively applied to all the non-
leaf vertices of the tree following a top-down manner. For
each leaf vertex which corresponds to a non-containing
k-influential community, we store all the nodes of that non-
containing k-influential community. The following example
illustrates the tree organization of all the k-influential com-
munities.

Example 3 Reconsider the graph shown in Fig. 1. Let us
consider the case of k = 2. Clearly, the entire graph is
a connected 2-core, thus it is a 2-influential community.
Therefore, the root vertex of the tree corresponds to the
entire graph. After deleting the smallest weight node v1,
we get three 2-influential communities which are the sub-

1 If the maximal k-core of G has more than one MCCs, the ICPS is a
forest, where each MCC generates a tree.

v1 v8

v2 v3 12v

13v

14v 15v

v4 v5v6

v7

v8

v9
10v 11v

v1 v2

v3
v4 v5 v6 12v

v7 10v

v8v9 11v

13v
14v 15v

13v
15v14v12v

11vv6v7v9
10v

v1

(a) (b) (c)

Fig. 2 Tree organization of all the k-influential communities. a k=1,
b k=2, c k=3

graphs induced by the node sets {v3, v4, v5}, {v6, . . . , v11},
and {v12, . . . , v15}, respectively. Thus, we create three child
vertices for the root vertex which corresponds to the three 2-
influential communities, respectively. Since v1 and v2 are not
included in these three 2-influential communities, we store
them in the root vertex. The same idea is recursively applied
in all the three 2-influential communities. For instance, for
the 2-influential community induced by {v3, v4, v5}, we can
find that it is a non-containing 2-influential community. By
our compression method, we store the nodes {v3, v4, v5} in
the corresponding tree vertex. For the other child vertices of
the root, we have a similar process. Also, similar processes
can be used for other k values. Figure 2 shows the tree orga-
nization for all k for the graph shown in Fig. 1. �	

We refer to the above tree-shape structures for all k from 1
to kmax as the ICPS. Below,we analyze the space complexity
of the ICPS in Theorem 6.

Theorem 6 The space complexity of the ICPS is O(m).

Proof By our compression method, each node u in G is only
stored once in the tree (or forest) for a given k. Moreover,
by our solution, each node u with a core number cu can
only be stored in at most cu trees (or forests). Thus, the
total space overhead of the ICPS is bounded by

∑
u∈V cu �∑

u∈V d(u,G) = 2m. �	
ByTheorem 6, the ICPS takes linear spacew.r.t. the graph

size; thus, it can be used for very large graphs. Below, we
present two algorithms to construct the ICPS.

4.2 The basic ICPS construction algorithm

The basic ICPS construction algorithm is to invoke the DFS-
based algorithm (Algorithm 2) kmax times, where kmax is the
maximal core number of the nodes in G. Specifically, the
basic algorithm consists of two steps. In the first step, the
algorithm iteratively calls Algorithm 2 to compute all the
tree vertices for each k (k = 1, . . . , kmax). Then, in the sec-
ond step, the algorithm invokes a tree construction algorithm

123

Finding influential communities in massive networks 759

Algorithm 3 The basic ICPS construction algorithm
Input: G = (V, E) and W
Output: The ICPS
1: for i = 1 to kmax do
2: j ← 0; I Tk ← ∅
3: Compute the maximal k-core Ck(G) of G;
4: while Ck(G) �= ∅ do
5: Let Hk(j) be themaximal connected component ofCk(G)with

the smallest influence value;
6: Let u be the node with the smallest weight in Hk(j);
7: DFS(u) {The same DFS procedure as invoked in Algorithm 2};

8: Let S j be a set of nodes that are deleted in DFS(u);
9: Add a vertex S j in I Ti ;
10: j ← j + 1;
11: return ConstructTree();

Algorithm 4 ConstructTree()
1: for i = 1 to kmax do
2: Create a signal-vertex tree for each vertex in I Ti ;
3: for all node u in G sorted in decreasing order of wu do
4: for all v ∈ N (u,G) s.t. wv > wu do
5: for i = 1 to min{cu , cv} do
6: Su ← the root node of the tree in I Ti containing u;
7: Sv ← the root node of the tree in I Ti containing v;
8: if Su �= Sv then
9: Merge the trees rooted at Su and Sv in I Ti by adding Sv as

a child vertex of Su ;
10: return {I T1, · · · , I Tkmax };

to build the ICPS. The detailed description of the algorithm
is outlined in Algorithm 3. Note that in line 8 of Algorithm 3,
all the nodes deleted after invoking DFS(u) must be stored
in a tree vertex. The reason is that the nodes deleted by
DFS(u) are excluded in any k-influential sub-communities
of the current k-influential community. Moreover, only these
nodes in the current k-influential community are excluded in
its k-influential sub-communities. Thus, by our compression
method, we need to create a tree vertex that contains all these
nodes (line 9 of Algorithm 3). After generating all the tree
vertices for all k, the algorithm calls Algorithm 4 to construct
the ICPS (line 11 of Algorithm 3).

Specifically,Algorithm4works in a bottom-upmanner. To
build a tree (or forest) structure for each k (k = 1, . . . , kmax),
the algorithm first builds a single-vertex tree for each tree
vertex generated in the previous step (lines 1–2 of Algo-
rithm 4). Then, for each k, the final tree (or forest) structure
can be obtained by iteratively merging two subtrees (lines 3–
9). Here, the merge operation between two subtrees T1 and
T2 is defined as follows. Let r1 and r2 be the roots of subtrees
T1 and T2, respectively. Assume that f (r1) < f (r2) where
f (ri) = minu∈ri {wu} for i = 1, 2. Then, themerge operation
between T1 and T2 is to set the root of T2 as a child vertex of
the root of T1. Note that this subtree merge operation can be
efficiently implemented by using a union-find structure [10].
Moreover, we find that such a bottom-up tree construction

algorithm for all k can be done via traversing the graph once,
following a decreasing order of the node weight (lines 3-9
of Algorithm 4). The detailed implementation is depicted in
Algorithm 4. We prove the correctness of Algorithm 4 in
Theorem 7.

Theorem 7 Algorithm 4 correctly creates the tree-shape
structures for all k (k = 1, . . . , kmax).

Proof First, it is easy to verify that for each k, thefinalmerged
structure produced by Algorithm 4 must be a tree. Thus, to
prove the theorem, we need to show that the resulting tree
structure is exactly the tree structure defined in Sect. 4.1.
Below,we focus onproving the theorem for one k, and similar
arguments can also be used for other k values. In addition, for
convenience, we refer to the tree generated by Algorithm 4
as T̃ , and denote the tree defined in Sect. 4.1 by T . Our goal
is to show T̃ = T . Let ru be a tree vertex, and f (ru) =
minu∈ru {wu} be the weight of the tree vertex ru . We sort
all the tree vertices in an decreasing order based on their
weights (i.e., f (r1) > · · · ,> f (rNk)). Then, we prove the
theorem by an induction argument. First, the subtree induced
by r1 of T̃ is clearly the subtree induced by r1 of T . Second,
we denote the subtree (or sub-forest) induced by the vertices
{r1, . . . , r j } of T̃ by T̃ j , and denote the subtree (or sub-forest)
induced by the vertices {r1, . . . , r j } of T by Tj . We make
an induction assumption that T̃i = Ti for all 1 < i ≤ j .
Based on this, we aim to prove T̃ j+1 = Tj+1. Specifically,
to prove T̃ j+1 = Tj+1, we only need to prove that for each
edge e = (r j+1, ri) in Tj+1 with i < j + 1, it is also in
T̃ j+1. With e = (r j+1, ri) ∈ Tj+1 and the property of Tj+1,
we know that the k-influential community induced by the
subtree rooted by vertex r j+1 must contain the k-influential
community induced by the subtree rooted by vertex ri . As
a result, there must exist an edge (u, v) in G such that u is
included in vertex r j+1 and v is contained in a vertex of the
subtree rooted by ri . Assume without loss of generality that
wu < wv . When Algorithm 4 visits a node u, the algorithm
will traverse the edge (u, v), and then, the algorithm will
merge the subtree rooted by vertex r j+1 and the subtree that
includes v. Note that at this moment, the subtree produced by
Algorithm 4 with root vertex containing v is ri (by induction
assumption). Thus, Algorithm 4 creates an edge between the
vertex r j+1 and ri in T̃ j+1. This completes the proof. �	

The correctness of Algorithm 3 can be guaranteed by The-
orems 4 and 7. Below, we give an example to show how
Algorithm 3 works.

Example 4 Consider the graph shown in Fig. 1. For each k,
by invoking theDFS-based algorithm,Algorithm 3 generates
all the tree vertices shown in Table 1. Then, the algorithm
calls Algorithm 4 to build the tree structure. First, for each k
(k = 1, 2, 3), the Algorithm 4 creates a tree for each vertex.

123

760 R.-H. Li et al.

Table 1 Tree vertices for all k

k = 1 {v1}, {v2}, {v3}, {v4, v5}, {v6}, {v7}, {v8},
{v9, v10, v11}, {v12}, {v13}, {v14, v15}

k = 2 {v1, v2}, {v3, v4, v5}, {v6}, {v7, v10},
{v8, v9, v11}, {v12}, {v13, v14, v15}

k = 3 {v1, v8}, {v6, v7, v9, v10, v11}, {v12, v13, v14, v15}

For instance, for k = 1, the algorithm generates 11 trees,
because in Table 1 (row 1), there are 11 vertices when k =
1. Then, the algorithm processes the node v15, as it is the
largest weight node. As can be seen, v15 has four neighbor
nodes {v1, v12, v13, v14}. But the weights of all of them are
smaller than w15; thus, the algorithm continues to process
node v14. Since v14 has a neighbor v15 whose weight exceeds
w14, the algorithm traverses the edge (v14, v15) (line 4 of
Algorithm 4). Since the core numbers of v14 and v15 are 3,
these two nodes must be included in the vertices of the trees
of k = 1, 2, 3. Thus, for each k (k = 1, 2, 3), the algorithm
first finds the root vertices of the trees including v14 and
v15, respectively (lines 6–7 of Algorithm 4). Since both v14
and v15 are included in the same vertex for all k, no merge
operation will be done. For the remaining nodes, we use the
same procedure, and we will obtain the tree-shape structures
shown in Fig. 2 when the algorithm terminates. �	

We analyze the time complexity of Algorithms 3 and 4 as
follows.

Theorem 8 The time complexities of Algorithms 3 and 4
are O(kmax(m + n)) and O(ρm), respectively, where ρ is the
arboricity [8] of a graph G.

Proof We first analyze the time complexity of Algorithm 3.
For each k (k = 1, . . . ,min{cu, cv}), the most time-
consuming step is to compute the maximal k-core which
takes O(m+n) time. Therefore, the total cost for computing
all the tree vertices is O(kmax(m + n)). Since the tree con-
struction algorithm takes O(ρm) time and ρ ≤ kmax [17],
the total time complexity of Algorithm 3 is O(kmax(m+n)).

Then, we analyze the time complexity of Algorithm 4 as
follows. First, since the space complexity of the ICPS is
O(m), the total number of vertices in the ICPS is bounded
by O(m). Second, we can use a union-find structure to effi-
ciently implement the root-finding operation (lines 6–7 of
Algorithm 4) as well as the tree-merge operation (line 9 of
Algorithm 4). It is well known that the amortized time per
operation of a union-find structure is O(α(n)), where α(n)

is the inverse Ackermann function which is less than 5 for all
practical values of n [10]. Thus, each union-find operation
can be done in O(1) time. Based on these results, lines 1–2
in Algorithm 4 take O(m) time, and lines 3–9 take O(ρm)

time. The reason is as follows. For each edge (u, v), the algo-
rithm performs at most min{cu, cv} tree-merge operations

(lines 5–9 of Algorithm 4). Since each merge operation can
be done in O(1) time by the union-find structure, the time
cost taken in lines 3–9 is bounded by

∑
(u,v)∈E min{cu, cv} ≤∑

(u,v)∈E min{d(u,G), d(v,G)}. Based on the result shown
in [8], O(

∑
(u,v)∈E min{d(u,G), d(v,G)}) is bounded by

O(ρm), where ρ is the arboricity of a graph G. Therefore,
the time complexity of Algorithm 4 is O(ρm). �	

In addition, the space complexity ofAlgorithm3 is O(m+
n), which is linear w.r.t. the graph size.

4.3 The new ICPS construction algorithm

As shown in the previous subsection, the time complexity of
the basic ICPS construction algorithm is O(kmax(m + n))

which is inefficient when the graph size and kmax are very
large. Here, we propose a much more efficient algorithm to
construct the ICPS.

Recall that in Algorithm 3, the most time-consuming step
is to generate all the tree vertices for all k. Thus, to reduce
the time overhead, we strive to reduce the time cost of the
tree vertices generation procedure.UnlikeAlgorithm3which
creates all tree vertices following the increasing order of k
(i.e., k = 1, . . . , kmax), the key idea of our new algorithm
is that it generates all tree vertices following the increasing
order of node weights. Specifically, the new algorithm itera-
tively deletes the nodes following the increasing order of their
weights. When the algorithm removes a node u in an itera-
tion, the algorithm will generate the tree vertices containing
u for all k. Thus, if all the nodes are deleted, all tree vertices
are generated. After creating all tree vertices, the algorithm
calls Algorithm 4 to build the ICPS. The rationale behind
the new algorithm is as follows. We observe in Algorithm 3
that for each k, all the tree vertices are generated based on
the increasing order of node weights. Since all the tree gen-
eration procedures for k = 1, . . . , kmax share the same node
order, we can simultaneously create all the tree vertices for
all k by following this order.

The challenge of the new algorithm is how to correctly
create the tree vertices for all k when deleting a node. Note
that a node u with core number cu is included in cu different
vertices in the treeswith k = 1, 2, . . . , cu , respectively. Thus,
if u is deleted, the new algorithmmust simultaneously creates
cu different tree vertices. Since each tree vertex containing u
may also include other nodes, the algorithm also needs to find
these nodes and add them into the tree vertex that includes u.
Furthermore, after deleting a node, the core numbers of some
other nodes may be updated. Therefore, when the algorithm
deletes node u, the current core number of u denoted by c̃u
may not be the original cu , as it may be updated after a node
is deleted. This gives rise to a new challenge to devise such
a tree vertices generation algorithm.

123

Finding influential communities in massive networks 761

Algorithm 5 The new ICPS construction algorithm
Input: G = (V, E)

Output: The ICPS
1: Compute the core number cu for each node u ∈ V (G);
2: for all u ∈ V (G) do
3: xu ← |{v|v ∈ N (u,G), cv >= cu}|; c̃u ← cu ;
4: I Ti ← ∅ for 1 ≤ i ≤ kmax;
5: for all u ∈ V (G) sorted in increasing order of wu do
6: for i = 1 to c̃u do
7: Si ← {u};
8: k ← c̃u ; c̃u ← −1;
9: U ← ∅;
10: UpdateCore(u, k, S, U);
11: UpdateSupport(U);
12: for i = 1 to k do
13: Add a vertex Si in I Ti ;
14: return ConstructTree();

To overcome the above challenges, we develop an algo-
rithm that can correctly create the tree vertices for all k when
deleting a node. The idea of our algorithm is that when the
algorithm deletes a node u in an iteration, it creates c̃u (i.e.,
the current core number of u) tree vertices and dynamically
maintains the core numbers of the other nodes after deleting
u. By an in-depth analysis of our algorithm, we can show
that all the tree vertices containing u that are not created in
this iteration have already been generated before deleting u.
The detailed description of our algorithm is shown in Algo-
rithm 5.

Algorithm 5 iteratively deletes the nodes by following
the increasing order of their weights (line 5). In each iter-
ation, the algorithm creates c̃u tree vertices when deleting u,
where c̃u is the updated core number of node u (lines 6–7).
Note that in Algorithm 5, the algorithm does not explicitly
delete a node. Instead, the algorithm sets the core number
of a node to −1, indicating that the node is deleted (line 8).
After deleing a node, the algorithm calls Algorithms 6 and 7
to dynamically maintain the core numbers of the remaining
nodes (lines 10–11). Notice that Algorithms 6 and 7 general-
ize the core maintenance algorithm independently proposed
in [19,23] to handle the case of node deletion2. Here, we
implement this core maintenance algorithm by dynamically
updating the support of each node u (denoted by xu), which
is defined as the number of neighbors whose updated core
numbers are no smaller than c̃u . When the support of a node
u is smaller than it’s current core number (i.e., xu < c̃u),
the core number of u must be updated (lines 9–11 of Algo-
rithm 6). Note that the core numbers of all the remaining
nodes decrease by at most 1 after removing a node. In addi-
tion, after deleing a node u, the neighbor nodes of u with
core numbers larger than c̃u may need to update their core
number (line 4 of Algorithm 6). Moreover, in the core num-

2 The original core maintenance algorithms independently proposed in
[19,23] mainly focus on edge deletion and insertion.

Algorithm 6 UpdateCore(u, k, S, U)
1: if c̃u �= −1 then
2: Sc̃u+1 ← Sc̃u+1

⋃{u};
3: U ← U

⋃{u};
4: for all v ∈ N (u,G) s.t.c̃u ≤ cv do
5: if c̃v = −1 or v ∈ U then
6: continue;
7: if (c̃u = −1 and c̃v ≤ k) or (c̃u �= −1 and c̃v = c̃u + 1) then
8: xv ← xv − 1;
9: if xv < c̃v then
10: c̃v ← c̃v − 1;
11: UpdateCore(v, k, S, U);

Algorithm 7 UpdateSupport(U)
1: for all u ∈ U do
2: xu ← 0;
3: if c̃u = −1 then
4: continue;
5: for all v ∈ N (u,G)s.t.c̃u ≤ cv do
6: if c̃v ≥ c̃u then
7: xu ← xu + 1;

ber maintenance procedure (Algorithm 6), the algorithm also
needs to add the nodes whose core numbers are updated into
the corresponding tree vertices (line 2 of Algorithm 6). The
correctness of Algorithm 5 is shown in Theorem 9.

Theorem 9 Algorithm 5 correctly creates the ICPS.

Proof We prove the theorem by an induction argument.
Denote by {v1, v2, . . . , vn} a sorted node list wherewi < w j

if and only if 1 ≤ i < j ≤ n. When i = 1 (the first iter-
ation), Algorithm 5 processes node v1 and creates c1 = c̃1
tree vertices for it, which are denoted by S1, . . . , Sc1 . Note
that here Sl (l = 1, . . . c1) denotes the tree vertex included
in the tree of k = l. When deleting v1 (i.e., c̃1 ← −1), the
algorithm calls Algorithm 6 to maintain the core numbers of
all the remaining nodes. For a node vl whose core number is
updated by Algorithm 6, the algorithm adds vl to Scl . Note
that by using a result proved in [19,23], the core mainte-
nance algorithm (Algorithms 6 and 7) is correct. Moreover,
we know that when the algorithm deletes v1, only the nodes
whose core numbers are no larger than c1 may be updated.
Thus, there exists a tree vertex Scl , as cl ≤ c1. It remains to
show that for each Scl , it is exactly the one that includes v1
defined in our tree structure. Let us consider the maximal cl -
core. Clearly, v1 is contained in that core, as cl ≤ c1. After
the algorithm deletes v1, in the maximal cl -core, only the
nodes whose core numbers have been updated are inserted
into Scl . Note that this procedure is equivalent to a proce-
dure of invoking DFS(v1) in Algorithm 3, and all the nodes
deleted by DFS(v1) are added into Scl in our case. Thus, Scl
is indeed the tree vertex that includes v1 defined in our tree-
shaped structure. For other Sl (l = 1, . . . , c1), we can get
the same conclusion. As a result, when i = 1, the algorithm
correctly generates all tree vertices that contains node v1.

123

762 R.-H. Li et al.

Second, we make an induction hypothesis that for all j ≤ i ,
the algorithm correctly generates all tree vertices that con-
tains node v j . Now,we prove that for j = i+1, the algorithm
correctly creates all tree vertices including vi+1. On the one
hand, if c̃i+1 = ci+1, by using a similar argument used to
prove the case of i = 1, we can get that the algorithm cor-
rectly creates all tree vertices including vi+1. On the other
hand, if c̃i+1 < ci+1, the algorithm correctly generates the
tree vertices S1, . . . Sc̃i+1 that contains vi+1 by using a sim-
ilar argument used to prove the case of i = 1. It remains to
show that for the tree vertices Sc̃i+1+1, . . . , Sci+1 including
vi+1 must be generated before deleting vi+1. Note that by
our algorithm, there must exist a node vl with l < i + 1
such that when the algorithm deletes vl , the core number
of vi+1 decreases from c̃i+1 + 1 to c̃i+1. This implies that
when the algorithmdeletes vl , vi+1’s core number is updated;
thus, vi+1 must be inserted into a tree vertex of the tree of
k = c̃i+1 + 1 that also includes vl . Since l < i + 1, such
a tree vertex must be correctly generated by the induction
assumption. Clearly, such a tree vertex is indeed Sc̃i+1+1, as
each node can only be included in one vertex of a tree. Sim-
ilarly, for the case that the core number of vi+1 decreases
from c̃i+1 + 2 to c̃i+1 + 1, we can derive that Sc̃i+1+2 is cor-
rectly created. Iteratively using this procedure, we can get a
similar conclusion when the core number of vi+1 decreases
from ci+1 to ci+1−1. As a consequence, when j = i+1, the
algorithm correctly creates all tree vertices including vi+1.

�	
The following example illustrates how Algorithm 5 works.

Example 5 Consider the graph shown in Fig. 1. In the first
iteration of Algorithm 5, the algorithm processes node v1.
Since c̃1 = 3, the algorithm creates three tree vertices that
include v1, which is denoted by S1(v1), S2(v1), and S3(v1),
respectively (lines 6–7). Note that here Si (v1) (i = 1, 2, 3)
denotes a tree vertex that belongs to the tree of k = i . Sub-
sequently, the algorithm sets the core number of v1 to −1,
indicating that v1 is deleted. Then, the algorithm invokes
Algorithm 6 to update the core numbers of the remaining
nodes. After invoking Algorithm 6, we can find that v2 is
inserted into the tree vertex S2(v1), and v8 is added into the
tree vertex S3(v1). Moreover, the core numbers of v2 and v8
are updated to 1 and 2 respectively. After that, all the tree
vertices containing v1 have been generated, which is consis-
tent with the tree vertices shown in Table 1. In the second
iteration, the algorithm continues to deal with node v2 by
following the increasing order of node weights. Since the
current core number of v2 is 1, in this iteration, the algo-
rithm only creates one tree vertex S1(v2) that contains v2
(lines 6–7). Likewise, the algorithm sets the core number of
v2 to −1, denoting that v2 is removed. Then, the algorithm
calls Algorithm 6 to update the core numbers of the remain-
ing nodes. After invoking Algorithm 6, we can see that no

node needs to update its core number. Therefore, in this iter-
ation, the algorithm generates only one tree vertex S1(v2)
that contains only one node v2. Up to this iteration, all the
tree vertices that includes v2 is created. Other iterations are
processed similarly. After processing all nodes, the algorithm
correctly generates all tree vertices shown in Table 1. Finally,
the algorithm calls Algorithm 4 to construct the ICPS. �	

The time complexity of Algorithm 5 is shown in Theo-
rem 10.

Theorem 10 The time complexity of Algorithm 5 is O(ρm),
where ρ is the arboricity of the graph.

Proof First, in line 1, computing the core numbers for all
nodes can be done in O(m). In lines 2–3, the algorithm takes
O(m) time to initialize the support and the current core num-
ber for each node. Second, lines 6–7 and lines 12–13 take at
mostO(m) time cost for all node u ∈ V (G) in total. Themost
time-consuming steps are lines 10–11, which invokes the
core number maintenance algorithm. The time complexity
analysis for these two steps is very tricky. Let us consider an
edge (u, v). Assume without loss of generality that cu ≤ cv .
When deleting u, then Algorithm 6 traverses all u’s neigh-
bors (line 4 of Algorithm 6), as c̃u = −1. Thus, to visit
all neighbors for all the deleted nodes, the total time cost is
O(m). However, when deleting u, the algorithm may also
recursively visit the other nodes. For an edge (u, v), we first
consider the node u. Note that u’s core number is updated
at most cu times, because for each update, the core num-
ber decreases by 1. When the algorithm updates u’s core
number, it traverses the edge (u, v) once (see line 4 of Algo-
rithm 6), because c̃u ≤ cu ≤ cv . Therefore, for updating
the core number of u, the edge (u, v) will be traversed by
Algorithm 5 at most cu times. On the other hand, we con-
sider the node v. When the core number v is updated, the
algorithm also traverses the edge (v, u) at most cu times.
This is because the algorithm traverses the edge (v, u) only
when c̃v ≤ cu (line 4 of Algorithm 6), thus the number
of visit of (v, u) is bounded by cu . In summary, for each
edge (u, v), Algorithm 5 traverses it at most 2×min{cu, cv}
times. As a result, for all nodes, the total time cost for
invoking Algorithm 6 is bounded by 2

∑
(u,v)∈E min{cu, cv} �

2
∑

(u,v)∈E min{d(u,G), d(v,G)} = O(ρm). Note that to effi-
ciently implement line 4 of Algorithm 6, for each node u,
we can first sort all u’s neighbors in a decreasing order of
their core numbers by using a bin-sort algorithm, which takes
O(d(u,G)) time. Hence, for all nodes, the sort procedure
takes O(m) time in total. Then, to visit every u’s neighbor v

with c̃u ≤ cv (line 4 of Algorithm 6), we can linearly scan the
sorted neighbors until c̃u > cv . This procedure only traverses
all the edges (u, v) that satisfy c̃u ≤ cv . By a similar analysis,
the total time cost for invoking Algorithm 7 can be bounded
by 2

∑
(u,v)∈E min{cu , cv} � 2

∑
(u,v)∈E min{d(u,G), d(v,G)} =

123

Finding influential communities in massive networks 763

O(ρm). In addition, Algorithm 4 takes O(ρm) time. Putting
it all together, the time complexity of Algorithm 5 is O(ρm).

�	
Remark 1 According toChiba andNishizeki [8], the arboric-
ity of a graph is never larger than O(

√
m) in the worst case,

and it has shown to be very small in many real-world graphs
[15,20]. Thus, the time cost of Algorithm 5 is much lower
than the worst-case bound, which is also confirmed in our
experiments. �	

In addition, it is very easy to show that the space complex-
ity of Algorithm 5 is O(m + n).

4.4 Query processing algorithm

Based on the ICPS, the query processing algorithm is
straightforward. For Problem 1, to compute the top-r k-
influential communities, the algorithm first finds the tree
corresponding to k from the ICPS and then outputs the nodes
in the top-r subtrees with the highest weights (the weight of
a subtree is the minimum weight of nodes in its root vertex).
This is because in our ICPS, the nodes included in a subtree
of the tree corresponding to k exactly form a k-influential
community. Similarly, for Problem 2, the algorithm outputs
nodes in the top-r leaf vertices with the highest weights in the
tree corresponding to k, as the nodes in each leaf vertex forma
non-containing k-influential community. The time complex-
ity of the query processing algorithm for both Problems 1
and 2 is linear w.r.t. the answer size3; thus, it is optimal.

DiscussionsOurmodels and algorithms can also be extended
to handle the edge-weighted graph, in which each edge (not
the node) of the graph is associated a weight. Instead of itera-
tively deleting the smallestweight node,we can simply delete
the smallest weight edge in each iteration to find the influen-
tial communities in the edge-weighted graph. Likewise, we
can also extend our models and algorithms to directed graphs
by using the generalized core model [3], which defines the
k-core based on the in-degree or out-degree of a node in the
directed graph. Since the generalized core model is very sim-
ilar to k-core, all the techniques proposed in this paper can
be easily extended to handle the generalized core case.

5 Update in the dynamic network

Many real-world networks are frequently updated. Clearly,
when the network is updated, both the ICPS and the top-r
results also need to be updated. The challenge is that a single

3 Suppose that each answer only contains the set of nodes in each com-
munity; otherwise, we simply compute the induced subgraph by the
nodes in the answer.

edge insertion or deletion may trigger updates in a number of
tree vertices of the ICPS. This can be an expensive operation
because the corresponding tree vertices need to be recom-
puted. For example, consider a graph shown in Fig. 1. After
inserting an edge (v10, v11), the tree vertex {v9, v10, v11} in
the tree of k = 1 (see Table 1) needs to be split into two
tree vertices {v9} and {v10, v11}. In the tree of k = 2, the two
tree vertices {v7, v10} and {v8, v9, v11} are updated by three
tree vertices which are {v7}, {v8}, and {v9, v10, v11}. In the
tree of k = 3, no update is needed. To overcome this chal-
lenge, wewill propose an efficient algorithm for dynamically
maintaining the tree vertices of the ICPS when the network
is updated. Note that we can also efficiently answer the query
by using the tree vertices only (without the tree structure).
Specifically, we can first find the top-r tree vertices and then
only search the neighbors of the nodes in the tree vertices to
construct the answer (i.e., the tree structure is implicitly con-
structed online). It is easy to show that the time complexity
of this algorithm is the same as the time complexity of the
previous tree-based algorithm to construct the top-r results
(include edges). Therefore, in this paper, we mainly focus on
updating the tree vertices. Below, we consider two types of
updates: edge insertion and edge deletion.

Before we proceed further, we define some useful and
frequently used notations. Let rmax be the maximal r in
the queries posed by the users. For example, we can set
rmax = 100, 000, because users typically are not interested
in the results beyond top-100, 000. It should be noted that
compared to a large rmax (e.g., rmax = 100, 000), the prun-
ing performance of our algorithm is much better when rmax

is small (e.g., rmax = 100). In other words, our algorithm
prefers a small rmax. In the experiments, we will show that
even for a large rmax = 100, 000, our algorithm is still
two orders of magnitude faster than the baseline algorithm.
Therefore, we believe that setting rmax = 100, 000 is suffi-
cient in practice.

For convenience, we refer to the tree of k = i in the ICPS
as tree-i . Let r̃u be the rank of u in the sorted list of nodeswith
the increasing order by weights. For simplicity, we assume
that the rank of a node is based on the property of the node
itself, which is independent of edge updates. For each tree-
i (i = 1, . . . , kmax), we assign a time stamp for every tree
vertex when it is generated by Algorithm 2. Here, the time
stamp is an integer ranging from 1 to ni , where ni denotes
the number of vertices in tree-i . Note that by definition, a tree
vertex with a large time stamp implies that the tree vertex has
a large influence value. Denote by R(i)

u the time stamp of the
tree vertex that contains node u in tree-i . For convenience, we
also refer to R(i)

u as the time stamp of node u in tree-i when
the definition is clear. Let r̃ (i)

max be the rank of the smallest
weight node in the tree vertex with time stamp ni −rmax +1.
For example, reconsider the graph shown in Fig. 1. We can
see that r̃v9 = 9. In tree-1, R(1)

v9 = 8, because v9 is included

123

764 R.-H. Li et al.

in the tree vertex {v9, v10, v11} whose time stamp is 8 (see
Table 1). Assume that rmax = 4. Then, r̃ (1)

max = 9, because in
tree-1, the tree vertexwith time stamp n1−rmax+1 (equals 8)
is {v9, v10, v11}, where the rank of the smallest weight node
(v9) is 9.

5.1 Handling edge insertion

Here, we consider the case of inserting an edge (u, v). The
straightforward method is to re-compute all tree vertices
using Algorithm 5 when the graph is updated. Clearly, this
method is inefficient for large graphs. Below, we first present
two basic updating rules and then propose a minimum tree
re-computation method to further reduce the computational
cost for edge insertion.
The basic updating rules: we give two basic updating rules
below.
Rule 1: let cmin = min{cu, cv} (i.e., the minimum core
number of u and v). Then, after inserting (u, v), every tree-i
for i > cmin + 1 will not be updated. This is because when
inserting an edge, the core numbers of the nodes increase by
at most one [19]. As a result, each i-influential community
for i > cmin + 1 does not change, and thus, every tree-i
remains unchanged.
Rule 2 (Lazy update): the key idea of the lazy update rule is
that we only maintain the tree vertices when they affect the
top-r results for r ≤ rmax. Formally, we have the following
lemma.

Lemma 4 For each tree-i (i = 1, . . . , kmax), if r̃u < r̃ (i)
max or

r̃v < r̃ (i)
max, the tree vertices in the top-r results for r ≤ rmax

keep unchanged when the graph is updated by inserting or
deleting an edge (u, v).

Based on the above lemma, when inserting an edge (u, v),
we first check the conditions r̃u < r̃ (i)

max and r̃v < r̃ (i)
max. If one

of them holds, we do not perform any update operation for
the tree vertices in tree-i , because their updates do not affect
the top-r results for r ≤ rmax.
The minimum tree re-computation method Besides the
basic updating rules, here we present a method which can
achieve minimum tree re-computation when an edge is
inserted. The method, as verified in our experiments, can
largely reduce the computational cost for edge insertion even
after Rules 1 and 2 are applied. Recall that after inserting
an edge (u, v), all tree-i with i > cmin + 1 do not change
(by Rule 1); thus, we only need to update all tree-i with
i = 1, . . . , cmin + 1. Specifically, we consider two cases: (1)
all tree-i with i = 1, . . . , cmin, and (2) tree-(cmin + 1).

For case (1), we let liw be the number of w’s neighbors
whose time stamps are no less than w after inserting (u, v),
i.e., liw = |{x |x ∈ N (w,G) ∧ R(i)

x ≥ R(i)
w }|. By this definition, liw

denotes the degree of w in the i-core after deleting all nodes
whose time stamps are smaller than w. We assume without

loss of generality that R(i)
u ≤ R(i)

v in tree-i . Let I Ti [R(i)
u]

be the tree vertex containing u and ū be the smallest weight
node in I Ti [R(i)

u]. After inserting (u, v), for each tree-i with
i = 1, . . . , cmin (case (1)), we study whether I Ti [R(i)

u] needs
to be updated. To this end, we recover the procedure of gen-
erating the tree vertex I Ti [R(i)

u]. In particular, we perform a
similar DFS procedure as Algorithm 2 to recursively delete
the nodes in I Ti [R(i)

u]. Unlike Algorithm 2, here we use liw as
the degree of node w, and the DFS procedure only traverses
the nodes in I Ti [R(i)

u] and their neighbors as well. Similar to
Algorithm 2, the DFS procedure initially traverses node ū.
When a neighbor node of w for w ∈ I Ti [R(i)

u] is deleted, liw
decreases by 1, and when liw is smaller than i , w is deleted.
If node u is deleted when the DFS procedure terminates,
the tree vertex I Ti [R(i)

u] does not need to be updated, and
therefore, all tree vertices keep unchanged. The reason is as
follows. First, the insertion of edge (u, v) does not affect the
tree vertices with time stamps smaller than R(i)

u . Second, if
u is deleted, all the other nodes in I Ti [R(i)

u] must be deleted
(by the definition of tree vertex), and thus, the tree vertex
I Ti [R(i)

u] does not change. Third, if u is deleted, all u’s outgo-
ing edges are also deleted, and thus, inserting the edge (u, v)

does not affect the tree vertices with time stamps larger than
R(i)
u . On the other hand, if node u fails to be removed by the

DFS procedure, then we re-compute all the tree vertices for
tree-i . Below, we give a sufficient and necessary condition
for updating the tree vertices in tree-i .

Lemma 5 For each tree-i with i = 1, . . . , cmin, the tree
vertices in tree-i need to be updated after inserting (u, v)

(R(i)
u ≤ R(i)

v), if and only if u is not deleted by the DFS
procedure.

Proof First, by definition, if u is not deleted by the DFS
procedure, the original vertex I Ti [R(i)

u] (before inserting the
edge (u, v)) in tree-i that includes u must be revised, as u is
no longer in that tree vertex. Therefore, tree vertices in tree-i
need to be updated. Second, suppose that there exists a tree
vertex in tree-i that is updated. Then, the tree vertex including
u must be updated. This is because if the original tree vertex
I Ti [R(i)

u] including u does not update, no tree vertex in tree-i
will be updated after inserting (u, v). Assume to the contrary
that u is deleted by the DFS procedure, then all the other
nodes in I Ti [R(i)

u] must be removed by definition, and thus,
I Ti [R(i)

u] does not update, which is a contradiction. �	
By Lemma 5, a sufficient and necessary condition for

updating the tree vertices in tree-i is that u is not deleted
by the DFS procedure. Thus, our algorithm, which is based
on such a sufficient and necessary condition, is optimal in
the sense that the number of tree re-computations by our
algorithm is minimum.

For case (2) (tree-(cmin + 1)), if u or v’s core number is
updated, we use Rule 2 to update the tree vertices in tree-
(cmin + 1). Otherwise, no update is needed.

123

Finding influential communities in massive networks 765

Algorithm 8 EdgeInsertion(u, v)
Input: G = (V, E), and edge (u, v)

Output: The updated tree vertices
1: Updated core numbers for all nodes;
2: cmin ← min{cu , cv};
3: for i = 1 to cmin do
4: if r̃u < r̃ (i)

max or r̃v < r̃ (i)
max then

5: Continue;
6: if IsRecompute(u, v, i) then
7: Recompute all tree vertices for tree i ;
8: if u or v’s core number is updated then
9: if r̃u ≥ r̃ (cmin+1)

max and r̃v ≥ r̃ (cmin+1)
max then

10: Recompute all tree vertices for tree cmin + 1;
11: Procedure bool IsRecompute (u, v, k)
12: R(k)

min ← min{R(k)
u , R(k)

v }, w̄ ← R(k)
u < R(k)

v ?u : v;

13: for all w ∈ I Tk [R(k)
min] do

14: lkw ← |{x |x ∈ N (w,G) ∧ R(k)
x ≥ R(k)

w }|;
15: Let ū be the smallest weight node in I Tk [R(k)

min];
16: InsertionDFS(ū, k, I Tk [R(k)

min]);
17: return (lkw̄ �= −1);

18: Procedure InsertionDFS (u, k, I Tk [R(k)
min])

19: lku ← −1;
20: for all v ∈ N (u,G) do
21: if v /∈ I Tk [R(k)

min] or lkv = −1 then
22: Continue;

lkv ← lkv − 1;
23: if lkv < k then
24: InsertionDFS (v, k, I Tk [R(k)

min]);

The algorithm for handling edge insertion is depicted in
Algorithm 8, which integrates both the basic updating rules
and the minimum tree re-computation method. In lines 4–5
and lines 9–10, we use Rule 2 for updating. In lines 6–7, we
apply the minimum tree re-computation method to update
the tree vertices. In the main loop (line 3), we use Rule 1
for updating. In lines 11–17, the procedure IsRecompute is
used to determine whether u (assume R(i)

u ≤ R(i)
v) is deleted

by the DFS procedure (InsertionDFS, lines 18–24) or not.
Note that in the InsertionDFS procedure, we set lku = −1 to
denote that u is deleted. The correctness of Algorithm 8 can
be guaranteed by Lemma 4 and Lemma 5. The time com-
plexity for checking the tree re-computation conditions in
Algorithm 8 (line 6) is O(

∑cmin
i=1

∑
u∈I T [R(i)

u] du). In the experi-
ments, we will show that our algorithm is at least four orders
of magnitude faster than the straightforward re-computation
based algorithm in large graphs.

5.2 Handling edge deletion

Consider the case of deleting an edge (u, v). Similarly, we
have two basic updating rules. First, for Rule 1, each tree-i
with i > cmin (cmin = min{cu, cv}) will not be updated after
deleting an edge (u, v), because all i-influential communi-
ties for i > cmin remain unchanged after removing (u, v).
Second, for Rule 2, we can also use Lemma 4 to handle

Algorithm 9 EdgeDeletion(u, v)
Input: G = (V, E), and edge (u, v)

Output: The updated tree vertices
1: Updated core numbers for all nodes;
2: cmin ← min{cu, cv};
3: for i = 1 to cmin do
4: if r̃u < r̃ (i)

max or r̃v < r̃ (i)
max then

5: Continue;
6: Compute liu and liv ;
7: if liu < i or liv < i then
8: Recompute all tree vertices for tree i ;

the edge deletion case. To further improve the efficiency, we
also propose a minimum tree re-computation method. For
each tree-i with i = 1, . . . , cmin, we let liw be the number
of w’s neighbors whose time stamps are no less than w after
deleting (u, v), i.e., liw = |{x |x ∈ N (w,G)∧R(i)

x ≥ R(i)
w }|. Below,

we give a sufficient and necessary condition for updating the
tree vertices.

Lemma 6 For each tree-i with i = 1, . . . , cmin, the tree
vertices in tree-i need to be updated after deleing (u, v), if
and only if liu < i or liv < i .

Proof First, if liu < i or liv < i after deleting (u, v), the
number of neighbors of u (or v) that are deleted after u (or
v) by the DFS algorithm is smaller than i , and thus, u (or
v) cannot be in the i-core after deleting all the nodes with
time stamps smaller than R(i)

u (or R(i)
v). This result implies

that the time stamp of u (or v) after deleting (u, v) must
be smaller than the original time stamp R(i)

u (or R(i)
v); thus,

the tree vertex in tree-i must be updated. Second, suppose
that there exists a tree vertex in tree-i that is updated, then
the tree vertex including u (i.e., I Ti [R(i)

u]) must be updated.
Suppose to the contrary that liu ≥ i and liv ≥ i after deleting
(u, v). Then, u and v must be in the i-core after deleting all
the nodes with time stamps smaller than R(i)

u and R(i)
v . This

result implies that all the tree vertices does not change after
deleting (u, v), which is a contradiction. �	

Based on Lemma 6, we can use liu and liv to determine
whether the tree vertices in tree-i need to be updated. The
algorithm for handling edge deletion is outlined in Algo-
rithm 9, which integrates both the basic updating rules and
the minimum tree re-computation method. In lines 4–5, we
use Rule 2 for updating, and in lines 6–8, we use the mini-
mum tree re-computation method to update the tree vertices.
In the main loop (line 3), we use Rule 1 for updating. The
time complexity for checking all re-computation conditions
inAlgorithm 9 (lines 6–7) is O(du+dv). In addition, it is worth
mentioning that both Algorithms 8 and 9 do not increase the
space complexity for top-r k-influential communities search.

Remark 2 Recall that in our algorithm, we assume that the
rank of the nodes does not change when the edges update. In

123

766 R.-H. Li et al.

some real-world applications, when the edges of the graph
frequently update, the weights of the nodes may also update.
Fortunately, this issue does not largely affect our algorithm.
The reasons are as follows. First, our algorithm relies on the
rank (not the weight) of the node. Thus, even if the weight
of a node is updated, its rank may not change. Second, even
when the rank of a node is updated, if it is not in the top-r
results, we also do not need to update the results based on
the lazy update rule. Third, if a node in the top-r results and
its rank is updated, we can use the following reduction to
reduce this case to a series of edge updating. Specifically, we
can first delete the node whose weight is updated and then
add the same node with the updated weight into the graph.
Note that the node deletion and insertion can be transformed
to a series of edge deletions and insertions. As a result, we
can also use our algorithm to handle this case.

6 The I/O efficient algorithm

In this section, we develop an I/O-efficient algorithm for the
influential community search problemwhen the network can-
not be completely stored in the main memory. We assume
that all the nodes of a network, and the top-r results can
be kept in the memory, i.e., the memory size (U) is at least
O(n). This assumption is reasonable in practice, and it is
also widely adopted in semi-external memory algorithms to
handle massive graph data [32,33]. For example, in the well-
known SNAP4 datasets (including 79 real-world networks),
the largest network consists of 64 million nodes, and it con-
tains 1.8 billion edges. In the well-known KONET5 datasets
(including230 real-world networks), the largest network con-
tains 68 million nodes and 2.6 billion edges. Clearly, in these
massive networks, the main memory of a typical PC (e.g.,
8GB main memory) can accommodate all the nodes but not
all edges. On the other hand, devising an algorithm for the
influential community search problem under this assumption
is a nontrivial task, because we cannot access all the edges in
themainmemory, and thus, all our algorithms proposed in the
previous sections cannot work under this setting. Below, we
will develop an interesting algorithm to tackle this challenge.

Recall that all the influential communities can be orga-
nized by a tree-shaped structure where each influential
community is represented by a tree vertex (as shown in
Fig. 2). Therefore, to solve the influential community search
problem, the key is to compute the corresponding tree ver-
tices for all influential communities. Below, we devise a
sequential algorithm, which is I/O-efficient, to compute all
the tree vertices for a given k value.

4 http://snap.stanford.edu.
5 http://konect.uni-koblenz.de/networks.

The key idea of the sequential algorithm is that it com-
putes the tree vertices following the decreasing order of their
weights, and the tree vertices (as well as the edges in the
corresponding influential communities) with large weights
can be safely deleted without affecting the correctness of the
algorithm to compute the tree vertices with small weights.
Specifically, we let w(e) = min{wu, wv} be the weight of
an edge e = (u, v). The algorithm first sorts the edges in
a non-increasing order of their weights using the standard
external memory sort algorithm (we can use the node ID to
break ties). Then, following this order, the algorithm loads the
edges into the main memory up to the memory limit. Sub-
sequently, the algorithm invokes Algorithm 2 to compute
the influential communities in the main memory (and thus
obtains the tree vertices). After that, the algorithm deletes
the computed influential communities as well as the associ-
ated edges from themainmemory and then sequentially loads
new edges into the main memory until reaches the memory
limit. The algorithm iteratively performs this procedure until
all the edges are scanned. Note that in each iteration, the algo-
rithm only works on a partial graph, which is loaded in the
main memory. To guarantee the correctness, we use an array,
called deposi t , to dynamically record the number of asso-
ciated edges that are deleted from each node. Let du be the
degree of a node u in the partial graph, called partial degree
of node u, and d̃u be the effective degree of a node u such
that d̃u = du + deposi t (u). Then, in each iteration, we use
the effective degree to compute the k-core and the influen-
tial communities in Algorithm 2. In each iteration, when we
delete the computed influential communities and their asso-
ciated edges, we update the deposi t array. It should be noted
that the deposi t array is kept in the main memory, because
the memory size is at least O(n) by our assumption. The
detailed description of the algorithm is depicted in Algo-
rithm 10. Note that in Algorithm 10, we use M to denote
the set of edges that are loaded into the memory (line 6). In
each iteration, the algorithm works on the partial graph gen-
erated by the edgesM and invokes Algorithm 2 to compute
the influential communities (also tree vertices) in the main
memory (lines 5–11). The following example illustrates how
the algorithm works.

Example 6 Let us reconsider the graph shown in Fig. 1.
Assume that k = 2 and the memory can hold at most 10
edges (except for storing all the nodes and the deposi t array),
i.e., |M| ≤ 10. The detailed running procedure is shown in
Table 2 and Fig. 3.

Initially, the deposi t array is set to be a zero array. In the
first iteration, the top-10 edges (with the highest w(e)) are
loaded into the memory. The corresponding partial graph
in the memory is depicted in Fig. 3a). The states of the
d array (partial degree) and d̃ array (effective degree) are
shown in Table 2 (the top part). Based on the effective degree,

123

http://snap.stanford.edu
http://konect.uni-koblenz.de/networks

Finding influential communities in massive networks 767

Algorithm 10 The I/O efficient algorithm
Input: G = (V, E), and the parameter k
Output: The tree vertices (influential communities)
1: w(e) ← min{wu, wv};
2: E ← External-Sort(E) (in a non-increasing order by w(e));
3: deposi t (u) ← 0 for each u ∈ V ;
4: while E �= ∅ do
5: Sequentially load edges (from E) into the memory up to the mem-

ory limit;
6: Let M be the set of edges in the memory; E ← E\M;
7: Compute d̃u for each node u (effective degree) in the memory;
8: Invoke Algorithm 2 to compute the influential communities based

on d̃u for each u in the memory;
9: Output the corresponding tree vertices;
10: Delete the computed influential communities and the associated

edges from the memory;
11: Update the deposi t array;

Table 2 Running example of Algorithm 10 (k = 2, |M| ≤ 10)

Initial deposi t [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
The first iteration {(v14, v15), (v13, v15), (v13, v14),
Edges (in memory) (v12, v15), (v12, v14), (v12, v13),

(v9, v11), (v9, v10), (v8, v11), (v8, v9)}
d (partial degree) [0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 2, 3, 3, 3, 3]
d̃ (effective degree) [0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 2, 3, 3, 3, 3]
Updated deposi t [0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 3, 3, 3, 3]
Tree vertices {v13, v14, v15}, {v12}, {v8, v9, v11}
The second iteration {(v9, v10), (v7, v11), (v7, v10),
Edges (in memory) (v6, v11), (v6, v10), (v6, v9),

(v6, v7), (v4, v5), (v3, v5), (v3, v4)}
d (partial degree) [0, 0, 2, 2, 2, 4, 3, 0, 2, 3, 2, 0, 0, 0, 0]
d̃ (effective degree) [0, 0, 2, 2, 2, 4, 3, 0, 4, 5, 2, 2, 3, 3, 3, 3]
Updated deposi t [0, 0, 2, 2, 2, 4, 3, 2, 4, 3, 4, 3, 3, 3, 3]
Tree vertices {v7, v10}, {v6}, {v3, v4, v5}
The third iteration {(v2, v8), (v1, v15), (v1, v13),
Edges (in memory) (v1, v8), (v1, v3), (v1, v2)}
d (partial degree) [5, 2, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1]
d̃ (effective degree) [5, 2, 3, 2, 2, 4, 3, 4, 4, 3, 4, 3, 4, 3, 4]
Updated deposi t [5, 2, 3, 2, 2, 4, 3, 4, 4, 3, 4, 3, 4, 3, 4]
Tree vertices {v1, v2}

the algorithm computes the influential communities on the
partial graph in the main memory. Clearly, in this itera-
tion, the algorithm obtains three influential communities, and
the corresponding tree vertices are {v13, v14, v15}, {v12}, and
{v8, v9, v11} (see Table 2). After computing the tree vertices,
the algorithm removes all the edges in the influential commu-
nities. It is easy to verify that all the edges except for (v9, v10)
are deleted from the memory in this iteration. Then, the algo-
rithm updates the deposi t array. The updated deposi t array
is shown in Table 2. For instance, deposi t (v9) = 2, because

11

10

98

13

14

15

13V

15V

12 14V
12V

10V

8V 9V

11V

7
54

3

11V11

10V

9
9V

10

6
6V 7V

5V

3V

4V

3

1

213 13V

15 15V

8
8V

3V

2V

1V

(a) (b) (c)

Fig. 3 Partial graphs in the memory (k = 2, |M| ≤ 10)

there are two edges (i.e., (v8, v9) and (v9, v11)) associated
with v9 that are deleted.

In the second iteration, the algorithm loads 9 new edges
into the memory, as there is already an edge (v9, v10) in the
memory. The partial graph is shown in Fig. 3b. The par-
tial degree and effective degree of all the nodes are given
in Table 2 (the middle part). Note that for each node, the
effective degree is equal to its current partial degree plus
the updated deposit value in the first iteration. For example,
d̃v9 = 4, because dv9

= 2 and deposi t (v9) = 2 (the updated
deposit value in the first iteration). In this iteration, the algo-
rithm gets three tree vertices which are {v7, v10}, {v6}, and
{v3, v4, v5}. Finally, the algorithm deletes the edges in the
influential communities and updates the deposit array (see
Table 2). In this iteration, all the 10 edges are deleted.

In the third iteration, the algorithm loads all the remainder
6 edges into the memory. The results are shown in Fig. 3c
and Table 2 (the bottom part). The procedure is very similar
to the first and second iterations; thus, we omit the details for
brevity. �	
Analysis of the algorithm First, we analyze the I/O cost
of Algorithm 10. In line 2, the algorithm needs to sort
the edges of the graph; thus, the I/O cost is O(sort (m)),
where O(sort (m)) denotes the I/O cost of the External-
Sort algorithm. In lines 4–11, the algorithm only needs to
scan the graph once; thus, the I/O cost is O(m/B), where
B denotes the block size. Therefore, the I/O cost the algo-
rithm is O(sort (m)). Second, we analyze the correctness of
the algorithm. Suppose that the algorithm can successfully
terminate. Then, the following theorem shows that the algo-
rithm is correct.

Theorem 11 If Algorithm 10 successfully terminates, the
algorithm correctly finds the influential communities and the
corresponding tree vertices for a given k.

Proof Since the algorithm computes the influential commu-
nities following the decreasing order of their weights, the
deletion of the influential communities with high weights
does not affect the algorithm to compute the influential com-
munities with low weights based on the effective degree of
nodes. Assume that the edge (u, v) has weight w0, and it is
the last edge that is loaded into the memory in the i-th itera-
tion. Let G̃≥w0 be a graph such that all the edgeswithweights

123

768 R.-H. Li et al.

smaller thanw0 are deleted (here we assume that the weights
of the edges form a total order; otherwise, we can use the
node ID to break the ties). By definition, it is easy to check
that the effective degree for any node u in the i-th iteration is
equal to the degree of u in G̃≥w0 . Thus, in the i-th iteration,
the influential community Hk computed in the partial graph
is the same as the influential community computed in G̃≥w0 .
Clearly, adding any edge with weight smaller than w0 into
G̃≥w0 does not affect the influential community Hk ; thus,
Hk is also the influential community in G. The above argu-
ments hold for any iteration. Consequently, any influential
community found by the algorithm must be a correct influ-
ential community in G. On the other hand, it is easy to show
that any influential community Hk in G will be found by the
algorithmwhen the smallest weight edge in Hk is loaded into
the memory. Put it all together, we conclude that the theorem
holds. �	

It should be noted that when |M| (the maximal number of
edges that can be kept inmemory) is very small, the algorithm
may fail to terminate. This is because in a certain iteration,
the partial graph inM may not contain any influential com-
munity, and thus, no edge can be deleted in this iteration,
which makes the algorithm fail to terminate. However, by
our assumption, the memory size is at least O(n); thus, |M|
can be as large as O(n) without violating the assumption.
In other words, the algorithm can hold a partial graph with
size O(n) in the memory. In most real-world networks, any
O(n)-size partial graph typically contains an influential com-
munity. Therefore, under these assumptions, the algorithm
can successfully terminate for most real-world graphs. With
Theorem 11, the algorithm can correctly compute the influ-
ential communities aswell as the corresponding tree vertices.
In our experiments, we set the maximal memory size only
to be 3GB (including store all nodes and the deposi t array),
and Algorithm 10 can correctly calculate all the influential
communities for all k values on the graphs with more than
one billion edges.

Armed with Algorithm 10, we can devise both online
search and ICPS-based algorithms for finding the top-r
k-influential communities (and non-containing k-influential
communities). Specifically, for the online search algorithm,
we can invoke Algorithm 10 with a parameter k, and the
algorithm can early terminate if there are r k-influential
communities that are outputted. This is because the algo-
rithm calculates the k-influential communities following the
decreasing order by their weights. For the ICPS-based algo-
rithm, we can invoke Algorithm 10 kmax times to compute
the ICPS. Clearly, the worst-case I/O cost for constructing
the ICPS is O(sort (m) + kmax × m/B). To speed up the
query processing, we can compute the core number for each
node using the fast I/O-efficient core decomposition algo-
rithm [29]. Let c(e) = min{cu, cv} be the core number of an

edge. We sort the edges in a non-decreasing order by their
core numbers using theExternal-Sort algorithm. For a query
with parameters k and r , we first load the top-r tree vertices
into memory and then sequentially load the associated edges
whose core numbers are no smaller than k into the memory
to generate the influential communities (since the edges are
sorted, we can sequentially load the edges). Both the online
search and ICPS-based algorithms can be easily modified
to find the top-r non-containing k-influential communities.
In Algorithm 10, we can use the deposi t array to determine
the tree vertex if it corresponds to a non-containing influen-
tial community. Specifically, in an iteration, if the deposi t
values (before updating) of all the nodes in that tree vertex
are 0, then the tree vertex corresponds to a non-containing
influential community. This is because no edge associated
with those nodes is deleted; thus, the tree vertex must be a
leaf vertex in the tree of the ICPS, which corresponds to a
non-containing influential community.

Comparison with Algorithm 2 Clearly, Algorithm 10 is
correct when the graph is completely contained in the main
memory. Assume that the edges are previously sorted; then,
the time complexity of the algorithm is O(m + n), which is
the same as the DFS-based algorithm (Algorithm 2). Also,
the space complexity of the algorithm isO(m+n). Compared
to Algorithm 2 (which works in a top-down manner), Algo-
rithm 10 computes the tree vertices following in a bottom-up
manner, which first computes the tree vertices with higher
weights followed by the tree vertices with lower weights.

7 Performance studies

We conduct extensive experiments to evaluate the proposed
algorithms. To construct the ICPS, we implement both
the basic (Algorithm 3) and the new (Algorithm 5) algo-
rithms, denoted by Basic and New respectively. For query
processing, we implement four algorithms, named Online-
All, Online-NCT, ICPS-All, and ICPS-NCT, respectively.
Online-All and Online-NCT are the DFS-based online
search algorithms (Algorithm 2) which are used to com-
pute the top-r k-influential communities and the top-r
non-containing k-influential communities, respectively; sim-
ilarly, ICPS-All and ICPS-NCT are the ICPS-based algo-
rithms used to compute the top-r k-influential communities
and the top-r non-containing k-influential communities,
respectively. Note that we do not implement the basic online
search algorithm (Algorithm 1), as it is impractical for many
real-world graphs. All algorithms are implemented in C++.
All experiments are conducted on a computer with 3.46GHz
Intel Xeon X5690 (6-core) CPU and 96GB memory run-
ning RedHat Enterprise Linux 6.4 (64-bit). Unless otherwise
specified, in all experiments, both the graph and the ICPS
are resident in the main memory. We will evaluate the I/O-

123

Finding influential communities in massive networks 769

Table 3 Datasets

Dataset n m dmax kmax

UK 18,520,486 298,113,762 194,955 943

Arabic 22,744,080 639,999,458 575,628 3,247

WebBase 118,142,155 1,019,903,190 816,127 1,506

Twitter 41,652,230 1,468,365,182 2,997,487 2,488

SK 50,636,154 1,949,412,601 8,563,816 4,510

FriSter 65,608,366 1,806,067,135 5,214 304

Table 4 Parameters

Parameter Range Default value

k 2, 4, 8, 16, 32, 64, 128, 256 16

r 5, 10, 20, 40, 80, 160, 320 40

n(%) 20, 40, 60, 80, 100 100

m(%) 20, 40, 60, 80, 100 100

efficient algorithms in Sect. 7.2, where the graph is resident
in the disk.

Datasets. We use six web-scale real-world graphs in our
experiments. The detailed statistics of our datasets are shown
in Table 3. The first five datasets in Table 3 are down-
loaded from (http://law.di.unimi.it/datasets.php), and the
FriSter dataset is downloaded from (http://snap.stanford.
edu). Among the six graphs, UK, Arabic, WebBase, and SK
are web graphs, and Twitter and FriSter are social networks.

Parameters. In all the experiments, without otherwise spec-
ified, we use the PageRank score of node u to denote its
weight, as PageRank is a widely used model to measure
the influence (or importance) of the nodes. For each dataset,
we vary 4 parameters: r (denoting the parameter of top-r),
k (denoting the parameter of k-influential community), the
percentage of nodes n, and the percentage of edges m. The
range of the parameters and their default values are shown
in Table 4. When varying m (or n) for scalability testing, we
extract subgraphs of 20%, 40% 60%, 80% and 100% edges
(or nodes) of the original graph with a default value of 100%,
using the uniform random edge sampling algorithm (random
node sampling). When varying a certain parameter, the val-
ues for all the other parameters are set to their default values.

7.1 Testing main memory algorithms

ICPSConstructionWe build the ICPS for six graphs using
both Basic and New. The ICPS construction time is shown
in Fig. 4a.New is 5–10 times faster thanBasic in all datasets.
Moreover, we can see that New is very efficient which takes
only 1,477s (<25 min) in the Twitter dataset (more than 1
billion edges and 41million nodes). This is becauseNew can

10

100

1K

10K

100K

UK Arabic
W

ebBase

Twitter

SK FriSter

Ti
m

e
(S

ec
)

New
Basic

(a)

 2
 4
 6
 8

 10
 12
 14
 16
 18

UK Arabic
W

ebBase

Twitter

SK FriSter

Si
ze

 (G
B

)

Graph Size
ICPS Size

(b)

Fig. 4 ICPS testing. a ICPS construction time, b ICPS size

avoid computing influential communities for all k values one
by one, which saves much computational cost. The result is
also consistent with the theoretical analysis shown in The-
orems 8 and 10. We further compare the size of the ICPS
with the size of the original graph. The results are depicted in
Fig. 4b. Over all the datasets, the sizes of ICPS are almost the
same as the size of the original graph. This result confirms
the theoretical analysis shown in Theorem 6.

Query processing (Vary k). We vary k from 2 to 256 and
evaluate the query processing time for the four proposed
algorithms by fixing r = 40. The results are reported in
Fig. 5. In all datasets, when k increases, the processing time
of Online-All and Online-NCT decreases. This is because
when k increases, the size of the maximal k-core decreases,
and the time complexity of Online-All and Online-NCT is
dominated by traversing the maximal k-core. Instead, when
k increases, the processing time of both ICPS-All and ICPS-
NCT increases. This is because when k increases, the size
of the top-r results increases, and thus it takes more time
to calculate the top-r results for both ICPS-All and ICPS-
NCT. When k is small, ICPS-All and ICPS-NCT is several
orders ofmagnitude faster thanOnline-All andOnline-NCT,
respectively. When k is large, the advantages of ICPS-All
and ICPS-NCT are not significant. The reason is that, when
k increases, the time cost for traversing the k-core decreases,
while the time spent on outputting the top-r results increases.
For instance, in UK, when the core number increases to 256,
the time overhead for outputting the top-r results dominates
the whole query processing time for all algorithms. Thus, the
processing time of all the algorithms are similar.

Query processing (Vary r) We vary the parameter r from
5 to 320 and evaluate the query processing time of the four
algorithms by fixing k = 16. The results are shown in Fig. 6.
Over all datasets, we can see that the processing time of all
the algorithms increases with increasing r . For Online-All
andOnline-NCT, the processing time increases very slowly.
This is because for both Online-All and Online-NCT, the
dominant cost is spent on traversing themaximal k-core other
than outputting the top-r results. For ICPS-All and ICPS-
NCT, when r is small, the processing time increases slowly.
However, when r is large, the processing time of ICPS-All

123

http://law.di.unimi.it/datasets.php
http://snap.stanford.edu
http://snap.stanford.edu

770 R.-H. Li et al.

1e-3

0.01

0.1

1

10

100

1K

2 4 8 16 32 64 128 256

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

2 4 8 16 32 64 128 256

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

2 4 8 16 32 64 128 256

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

2 4 8 16 32 64 128 256

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

2 4 8 16 32 64 128 256

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

100K

2 4 8 16 32 64 128 256

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

(a) (b) (c) (d) (e) (f)

Fig. 5 Query processing testing (Vary k) a UK (vary k), b Arabic (vary k), cWebBase (vary k) d Twitter (vary k), e SK (vary k), f FriSter (vary k)

1e-3

0.01

0.1

1

10

100

1K

5 10 20 40 80 160 320

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

(a) (b) (c) (d) (e) (f)

Fig. 6 Query processing testing (Vary r). a UK (vary r), bArabic (vary r), cWebBase (vary r), d Twitter (vary r), e SK (vary r), f FriSter (vary r)

100

1K

10K

100K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

New
Basic

10

100

1K

10K

100K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

New
Basic

100

1K

10K

100K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

New
Basic

10

100

1K

10K

100K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

New
Basic

100

1K

10K

100K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

New
Basic

10

100

1K

10K

100K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

New
Basic

(a) (b) (c) (d) (e) (f)

Fig. 7 Scalability testing (ICPS construction time). a Twitter (vary m), b Twitter (vary n), c SK (vary m), d SK (vary n), e FriSter (vary m), f
FriSter (vary n)

increases while the processing time of ICPS-NCT still keeps
stable. The reason is that when r increases, the size of the
r -th answer in the top-r results for the ICPS-All algorithm
tends to increase. Thus, when r is large, a large number of
redundant subgraphs are outputted in the top-r results. For
ICPS-NCT, when r increases, the size of the r -th answer in
the top-r results does not significantly increase; thus, the pro-
cessing time of ICPS-NCT keeps stable. For example, in the
FriSter dataset, when r increases to 320, the processing time
of ICPS-All approaches the processing time ofOnline-NCT
and Online-All, indicating that a large number of redundant
subgraphs are computed in ICPS-All. However, in this case,
ICPS-NCT is still very efficient, which is four orders of
magnitude faster than ICPS-All.

Scalability for ICPSconstruction We vary the number of
edges (m) and nodes (n) in Twitter, SK, and FriSter datasets
to study the scalability of the ICPS construction algorithms:
Basic and New. The results are reported in Fig. 7. As can
be seen, both Basic and New scale near linearly in most
datasets. Moreover, we can see thatNew is around one order
of magnitude faster than Basic, which is consistent with the
previous observations. In addition, we also report the scal-
ability results for the ICPS size in Fig. 8. We can see that
the ICPS size is nearly the same as the graph size over all
testing cases, which confirms the theoretical analysis shown
in Sect. 4.

Scalability for query processing. We vary the number of
edges (m) and nodes (n) in Twitter, SK, and FriSter datasets
to evaluate the scalability of the proposed query processing
algorithms. Fig. 9 depicts the results. As desired, the query
processing time for the online search algorithms (Online-
All and Online-NCT) increases with increasing graph size.
However, for the ICPS-based algorithms (ICPS-All and
ICPS-NCT), the query processing time does not signifi-
cantly increase when the graph size increases. The reason
is that the processing time of ICPS-All and ICPS-NCT are
mainly dependent on the size of the top-r communities, and
the size of the top-r communities is not largely affected by
the size of the graph. As a result, in all testing cases, ICPS-
All and ICPS-NCT are at least one order of magnitude faster
than Online-All and Online-NCT, respectively.

Dynamic update In this experiment, we evaluate the effi-
ciency of the proposed ICPS updating algorithms. We com-
pare three algorithms which are Ba, Ne, and Recompute.
Ba is the algorithm using two basic updating rules; Ne is
the algorithm using both two basic updating rules and the
minimum tree re-computation method (Algorithms 8 and 9);
Recompute is the straightforward updating algorithmwhich
uses Algorithm 5 to re-compute all tree vertices when the
graph is updated by an edge insertion/deletion. In all test-
ings, we set rmax = 100, 000. For each dataset, we randomly
delete 1K edges, and update the ICPS after every deletion,

123

Finding influential communities in massive networks 771

 2

 4

 6

 8

 10

 12

20% 40% 60% 80% 100%

Si
ze

 (G
B

)
Graph Size
ICPS Size

 0
 2
 4
 6
 8

 10
 12

20% 40% 60% 80% 100%

Si
ze

 (G
B

)

Graph Size
ICPS Size

 2
 4
 6
 8

 10
 12
 14
 16
 18

20% 40% 60% 80% 100%

Si
ze

 (G
B

)

Graph Size
ICPS Size

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

20% 40% 60% 80% 100%

Si
ze

 (G
B

)

Graph Size
ICPS Size

 2
 4
 6
 8

 10
 12
 14
 16
 18

20% 40% 60% 80% 100%

Si
ze

 (G
B

)

Graph Size
ICPS Size

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

20% 40% 60% 80% 100%

Si
ze

 (G
B

)

Graph Size
ICPS Size

(a) (b) (c) (d) (e) (f)

Fig. 8 Scalability testing (ICPS size). a Twitter (vary m), b Twitter (vary n), c SK (vary m), d SK (vary n), e FriSter (vary m), f FriSter (vary n)

1e-3

0.01

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%
Ti

m
e

(S
ec

)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

100K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

1e-3

0.01

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

Ti
m

e
(S

ec
)

Online-All
Online-NCT

ICPS-All
ICPS-NCT

(a) (b) (c) (d) (e) (f)

Fig. 9 Scalability testing (Query processing time). a Twitter (varym), b Twitter (vary n), c SK (varym) d SK (vary n), e FriSter (varym), f FriSter
(vary n)

Table 5 Update time per edge
(in seconds)

Dataset Ins (Ba) Del (Ba) Ins (Ne) Del (Ne) Recompute

UK 2.460 2.188 0.148 0.107 67.27

Arabic 9.658 9.483 0.798 0.466 518.36

WebBase 0.522 0.483 0.201 0.175 331.74

Twitter 66.500 64.947 0.035 0.001 1211.39

SK 2.936 2.940 0.507 0.298 897.41

FriSter 6.074 6.076 0.203 0.001 1919.56

and then, we insert the same 1K edges and update the ICPS
after every insertion. The average update time per edge inser-
tion/deletion is reported in Table 5. From Table 5, we can
make the following observations. Compared toRecompute,
Ba can significantly reduce the cost of maintaining the tree
vertices. For example, in WebBase, Ba only takes 0.5s to
maintain all the tree vertices for either insertion or deletion,
while Recompute requires more than 330 s. However, only
applying the basic updating rules may be still inefficient.
For example, in Twitter, Ba needs more than 60 s for each
edge insertion/deletion which is inefficient. Ne, however,
can significantly cut the updating time of Ba by apply-
ing the minimum tree re-computation method. For instance,
in the Twitter dataset, by using Ne, the updating time for
an edge insertion/deletion is reduced from 66.5/64.9s to
0.035/0.001s. For Ne, handling edge deletion is more effi-
cient than handling edge insertion, because checking the
re-computation condition for edge insertion needs to invoke
a DFS procedure (see Algorithm 8). In general, we can see
that the updating time of Ne is several orders of magnitude
faster than the straightforward re-computation based method
(Recompute) over all datasets, which confirms the theoret-
ical analysis in Sect. 5.

7.2 Testing I/O efficient algorithms

In this subsection, we test the performance of our I/O effi-
cient algorithms. We set the maximum available memory
used for each algorithm to be 3 GB for all tests in this
subsection. We choose the largest four datasets WebBase,
Twitter, SK, and FriSter in Table 3 for testing. To load the
entire graph in memory, the four datasets require 6.37 , 8.96
, 13.49 , and 13.46 GB memory, respectively. Therefore, all
the main memory algorithms cannot be used to process this
four graphs with the limited 3 GB memory. We use Online-
All+,Online-NCT+, ICPS-All+, and ICPS-NCT+ to denote
the I/O-efficient versions for algorithmsOnline-All,Online-
NCT, ICPS-All, and ICPS-NCT, respectively, all of which
are based on the Algorithm 10.

ICPSConstruction performance The ICPS construction
performance of the I/O-efficient algorithm on the four
datasets WebBase, Twitter, SK, and FriSter are shown in
Fig. 10. Specifically, Fig. 10a shows the results for ICPS con-
struction time and Fig. 10b shows the results for the number
of I/Os. As desired, the ICPS construction time and I/Os of
the algorithm roughly increases with increasing graph size.

123

772 R.-H. Li et al.

1

10

100

W
ebBase

Twitter

SK FriSter

Ti
m

e
(H

ou
rs

)
ICPS Cons. Time

(a)

10M

100M

1G

10G

W
ebBase

Twitter

SK FriSter

I/O

s

ICPS Cons. I/Os

(b)

Fig. 10 ICPS testing for the I/O-efficient algorithm. a ICPS construc-
tion time, b ICPS construction I/Os

0.1

1

10

100

1K

2 4 8 16 32 64 128 256

Ti
m

e
(S

ec
)

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

0.1

1

10

100

1K

10K

2 4 8 16 32 64 128 256

Ti
m

e
(S

ec
)

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

0.1

1

10

100

1K

10K

2 4 8 16 32 64 128 256

Ti
m

e
(S

ec
)

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

0.1

1

10

100

1K

10K

100K

2 4 8 16 32 64 128 256

Ti
m

e
(S

ec
)

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

(a) (b)

(c) (d)

Fig. 11 Query processing time for I/O efficient algorithms (Vary k). a
WebBase (vary k), b Twitter (vary k), c SK (vary k), d FriSter (vary k)

As an exception, Twitter requires more ICPS construction
time and I/Os than SK, which is larger than Twitter. This is
because when k increases, the size of the k-core in Twitter
reduces slowly than the size of the k-core in SK,which results
in the high ICPS construction time and I/Os in Twitter.

Query processing time (Vary k)The testing results of query
processing time forOnline-All+,Online-NCT+, ICPS-All+,
and ICPS-NCT+ when varying k are shown in Fig. 11. As
can be seen, the query processing time of ICPS-All+ (ICPS-
NCT+) consumes around 1 second over all the datasets, and it
is two orders of magnitude faster thanOnline-All+ (Online-
NCT+). Generally, the performance of all the algorithms are
not largely influenced by k. The results in SK (Fig. 11 c and
FriSter (Fig. 11 d are similar to those inWebBase andTwitter,
respectively, because SK and WebBase are both web graphs
with similar graph properties and FriSter and Twitter are both
social networks with similar graph properties. These results
confirm the efficiency of the proposed algorithms.

Query processing I/Os (Vary k) The results of the number
of I/Os consumed by Online-All+, Online-NCT+, ICPS-
All+, and ICPS-NCT+ when varying k are shown in Fig. 12.

100

1K

10K

100K

1M

10M

100M

1G

10G

2 4 8 16 32 64 128 256

I/O

s

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

1K

10K

100K

1M

10M

100M

1G

10G

2 4 8 16 32 64 128 256

I/O

s

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

1K

10K

100K

1M

10M

100M

1G

10G

2 4 8 16 32 64 128 256

I/O

s

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

100

1K

10K

100K

1M

10M

100M

1G

10G

2 4 8 16 32 64 128 256

I/O

s

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

(a) (b)

(c) (d)

Fig. 12 Query processing I/Os for I/O efficient algorithms (Vary k). a
WebBase (vary k), b Twitter (vary k), c SK (vary k), d FriSter (vary k)

Since the results in four datasets are similar, we mainly
analyze the results in the WebBase dataset. Specifically,
from Fig. 12a, we can see that the I/O costs of Online-
All+ andOnline-NCT+ are robust with varying k. However,
the I/O consumptions of ICPS-All+ and ICPS-NCT+ are
unstable when k increases. This is because the number of
I/Os consumed by ICPS-All+ and ICPS-NCT+ depends on
the size of the top-r communities, which is unstable when
k increases. Additionally, we can observe that ICPS-All+
(ICPS-NCT+) consumes 100 to 1000 times less I/Os than
Online-All+ (Online-NCT+), which further confirms that
the ICPS-based algorithms are much more efficient than the
online search algorithms.

Query processing time (Vary r) In this experiment, we test
the query processing time for Online-All+, Online-NCT+,
ICPS-All+, and ICPS-NCT+ when varying r . The results
are shown in Fig. 13. From Fig. 13, we can see that the query
processing time ofOnline-All+ andOnline-NCT+ are robust
with varying r in all datasets. This is because the top-r results
can be computed by Online-All+ and Online-NCT+ when
loading the same set of edges into the memory. In the social
network datasets (Twitter and FriSter), Online-All+ is much
more efficient thanOnline-NCT+. This is because, in social
networks, the tree structure of all the influential communities
may be very high, and thus finding the top-r non-containing
k-influential communities (the leaves of the tree) requires to
load a large number of edges into the memory. As desired,
the ICPS-based algorithms (ICPS-All+ and ICPS-NCT+)
are much more efficient than the online search algorithms
(Online-All+ and Online-NCT+). These results are consis-
tent with our previous results.

Note that in FriSter (Fig. 13d, the query processing time
of ICPS-All+ is even faster than that of ICPS-All shown

123

Finding influential communities in massive networks 773

0.1

1

10

100

1K

5 10 20 40 80 160 320

Ti
m

e
(S

ec
)

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

Ti
m

e
(S

ec
)

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

Ti
m

e
(S

ec
)

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

Ti
m

e
(S

ec
)

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

(a) (b)

(c) (d)

Fig. 13 Query processing time for I/O efficient algorithms (Vary r). a
WebBase (vary r), b Twitter (vary r), c SK (vary r) d FriSter (vary r)

in Fig. 6f. This is because in ICPS-All+, we obtain the set
of edges of the top-r communities by computing the cor-
responding induced subgraphs in the k-core of the original
graph, which is kept in the disk. However, in ICPS-All, we
obtain the set of edges of the top-r communities by comput-
ing the induced subgraphs directly from the original graph
in the memory. Since the size of the k-core is typically much
smaller than the size of the original graph and the set of top-
r k-influential communities may largely overlap, computing
the induced subgraphs from the k-core can avoid large redun-
dant computational costs compared to computing the induced
subgraphs from the original graph.

Query processing I/Os (Vary r). In this experiment, we
test the I/O cost forOnline-All+,Online-NCT+, ICPS-All+,
and ICPS-NCT+ when varying r . The testing results are
shown in Fig. 14. The curves for the number of I/Os in all
datasets are consistent with those for the processing time
shown in Fig. 13, respectively. Specifically, similar to the
results for query processing time, the I/O cost ofOnline-All+
and Online-NCT+ are robust with varying r in all datasets.
As desired, when r increases, the I/O overhead for ICPS-
All+ and ICPS-NCT+ increases. ICPS-All+ (ICPS-NCT+)
is much more efficient thanOnline-All+ (Online-NCT+) for
various r values over all datasets. For example, in FriSter
(Fig. 14 d, ICPS-NCT+ is four orders of magnitude more
I/O-efficient than Online-NCT+. These results further con-
firm the efficiency of the proposed algorithms.

7.3 Case studies

We use a co-authorship network extracted from ArnetMiner
(http://arnetminer.org) for case studies. The dataset consists
of authors in different research areas including database,

100

1K

10K

100K

1M

10M

100M

1G

10G

5 10 20 40 80 160 320

I/O

s

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

10K

100K

1M

10M

100M

1G

5 10 20 40 80 160 320

I/O

s

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

10K

100K

1M

10M

100M

1G

5 10 20 40 80 160 320

I/O

s

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

100

1K

10K

100K

1M

10M

100M

1G

10G

5 10 20 40 80 160 320

I/O

s

Online-All+
Online-NCT+

ICPS-All+
ICPS-NCT+

(a) (b)

(c) (d)

Fig. 14 Query processing I/Os for I/O efficient algorithms (Vary r). a
WebBase (vary r), b Twitter (vary r), c SK (vary r), d FriSter (vary r)

data mining, semantic web, machine learning, information
retrieval, Bayesian network, and so on. The graph contains
5411 nodes and 17,477 edges. Each author (node) is associ-
ated with a label, denoting the research area of that author.
Based on this dataset, we conduct three various case studies
to evaluate the effectiveness of the k-influential community
model.

Results for different k and r . In this case study, we use the
number of publications to denote the weight of an author. We
vary k from 4 to 10 and generate the top-3 non-containing
k-influential communities for each k value. The results are
depicted in Fig. 15. As can be seen, for a certain k, the top
results of the non-containing k-influential communities tend
to cover high influential researchers in different research
areas. For example, when k = 4, the top-1 result includes
high-influential researchers in database area, the top-2 result
contains high-influential researchers in data mining area, and
the top-3 result consists of high-influential researchers in
semantic web area. The researchers in each community are
highly connected with each other, and each of them plays
an leading role in the specific research area. These results
indicate that the k-influential community model is indeed
capable of capturing both influence and cohesiveness of a
community.

In addition,we can see that the parameter k can balance the
trade-off between influence and cohesiveness of a commu-
nity. In general, the influence value of a community decreases
with increasing k. For instance, comparing Fig. 15a with
Fig. 15d, when k increases from 4 to 6, some high influen-
tial researchers such as “H. V. Jagadish” and “Beng Chin
Ooi” leave the community, while some other researchers are
added into the community, forming a more cohesive but rel-

123

http://arnetminer.org

774 R.-H. Li et al.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 15 Case study: results for different k and r . a top-1 for k = 4, b top-2 for k = 4, c top-3 for k = 4, d top-1 for k = 6, e top-2 for k = 6, f
top-3 for k = 6, g top-1 for k = 8, h top-2 for k = 8, i top-3 for k = 8, j top-1 for k = 10, k top-2 for k = 10, l top-3 for k = 10

(a) (b) (c)

Fig. 16 Top-3 results using labels for weights (k = 6). a top-1 (ML),
b top-2 (IR), c top-3 (BN)

(a) (b)

(c) (d)

Fig. 17 Four truss communities containing “Jiawei Han.” a C1, b C2,
e C3, d C4

atively lower influential community. The reason is that when
k increases, the cohesiveness constraint in the k-influential
community model becomes more strict, which may exclude
some high influential nodes from the community and thus
may reduce the influence of the community. For a practical
recommendation, if the user wants to find a high influential
community, a small k is preferred, while if the user aims at
finding a high cohesive but relatively low influential commu-
nity, a large k is preferred.

 1

 2

 3

 4

 5

1 2 3 4 5 6
C

oh
es

iv
en

es
s S

co
re

k-Influ. Comm.
(k+1)-Truss Comm.

(a)

 1

 2

 3

 4

 5

1 2 3 4 5 6

In
flu

en
ce

 S
co

re

k-Influ. Comm.
(k+1)-Truss Comm.

(b)

Fig. 18 Comparison with truss community (k = 4, r = 1, 2, . . . , 6)

Using labels for weights In this case study, we use the labels
forweights to study the effectiveness of the k-influential com-
munity model. Specifically, we first give different weights
for different labels. Then, we rank the nodes based on the
weights, and break ties based on the number of publications.
Fig. 16 reports the results for k = 6 given that the weights of
different labels are ranked as “Machine Learning (ML)” >

“Information Retrieval (IR)” > “Bayesian Network (BN),”
and so on. Similar results can also be observed for different k
values (e.g., k = 8) and different weighting methods. From
Fig. 16, we can see that the top-3 results are consistent with
our weighting method (the top-1 result is a “Machine Learn-
ing” community, the top-2 result is a “Information Retrieval”
community, and the top-3 result is a “Bayesian Network”
community). These results suggest that the k-influential com-
munity model can also capture user-specified definition of
influence. In practice, the users can define the influence
based on their preferences, and our proposed methods can
be applied to identify the influential communities based on
user-defined influence.

Comparison with truss community Here, we compare the
proposed communitymodel with the truss communitymodel
[16], which is successfully applied to find query-dependent
cohesive communities in a large network. Here, a k-truss is
the maximal subgraph in which each edge is contained in
at least k − 2 triangles. For a fair comparison, we compare

123

Finding influential communities in massive networks 775

the k-influential community with the k + 1 truss community.
This is because a k + 1 truss is a k-core [27], and our k-
influential community is based on k-core. Below,we consider
the case when k = 4. Similar conclusions can also be made
for other k values. Fig. 17 depicts four 5-truss communities
containing “Jiawei Han.” From Fig. 17, we can see that the
5-truss communities mainly contains professor Jiawei Han’s
students or research fellows. However, in our 4-influential
community model, professor Jiawei Han’s community (see
Fig. 15b) includes many other influential researchers in data
mining area who have a co-author relationship with “Jiawei
Han.” The reason is that the k-truss community only captures
the cohesiveness of a community, while our k-influential
community not only captures the cohesiveness, but it also
considers the influence of a community.

We also perform a user study to compare our model with
the k-truss community. To this end, we recruit ten first-
year graduate students (majoring in computer science) from
Shenzhen University in China as human raters to rate the
resulting communities. All the ten human raters are aware
of the research on community detection and search. For
each resulting community, each rater is asked to give two
integer scores from 0 to 5 to evaluate the cohesiveness
and influence of the community, respectively (the higher
score means a better community). The detailed instruction
can be found in (http://www1.se.cuhk.edu.hk/~rhli/paper/
Instruction_vldbj.pdf) due to space limit. The resulting score
is obtained by taking the average score over all 10 scores
given by the 10 raters. We fix k = 4 and similar results can
also be observed for other k values. We first find the top-r
communities obtained by ourmodel, denoted by H1, . . . , Hr .
Then, for each node u in Hi (i = 1, . . . , r), we find the k+1-
truss community that contains u. Since wemay generate a set
of k + 1 truss communities for each Hi , we take the average
cohesiveness and influence scores as the scores of the k + 1-
truss community. Then, we compare the cohesiveness and
influence scores of Hi with the average scores of the corre-
sponding k + 1-truss community. Fig. 18 depicts the results.
As can be seen, the cohesiveness scores of our model and
the k-truss community model are comparable, whereas the
influence scores of our model are significantly higher than
those of the k-truss community model with different r . These
results further confirm that our model is much better than the
k-truss community model to capture both the cohesiveness
and the influence of a community.

8 Related work

Community search and discovery Sozio et al. [25] studied
the community search problem in social networks where the
goal is to find the maximal connected k-core with maximal
k value that contains the query nodes. In [25], the authors

proposed a linear time algorithm to solve the community
search problem. Recently, Cui et al. [12] proposed a more
efficient local search algorithm for the same problem. Except
the maximal k-core-based model, Cui et al. [11] proposed
an α-adjacency γ -quasi-k-clique model to study the overlap
community search problem. More recently, Huang et al. [16]
studied the community search problem based on a k-truss
community model. In addition, another related but different
problem is community discovery, which is to discover all the
communities in a network. This issue is extensively studied
in the literature. Two surveys on this topic can be found in
[13,30].All thementionedwork donot consider the influence
of a community. In our preliminary work [18], we studied the
influential community search problem and proposed several
efficient algorithms to find the most influential communities
in a network. In the present work, we substantially extend our
previous work. In particular, we develop a novel I/O-efficient
algorithm (under the assumption of U = O(n)) for the influ-
ential community search problem when the graph cannot be
stored in the main memory. We conduct comprehensive I/O
testings to evaluate the proposed I/O-efficient algorithm, and
the results demonstrate the efficiency of our algorithm.

Cohesive subgraphminingCohesive subgraph is an impor-
tant concept in social network analysis. There are many
different definitions of cohesive graphs in the literature,
which consists of maximal clique [6,7], k-core [5,19,24],
k-truss [9,27], DN-graph [28], maximal k-edge connected
subgraph [1,4,35], and so on. Due to a large number of appli-
cations, the cohesive subgraph mining problem has attracted
much attention in recent years. For example, James et al.
proposed a series of external memory algorithms for finding
and enumeratingmaximal clique [6,7], and for k-core [5] and
k-truss [27] decomposition in massive graphs. Interestingly,
many equivalent concepts of k-truss were independently pro-
posed in different papers. For instance, in [22], Saito and
Yamada termed the k-truss k-dense community, and this term
was also followed in [14]; In [26], k-truss is termed k-brace;
In [31], Zhang and Parthasarathy termed the k-truss trian-
gle k-core, and in [34], Zhao and Tung termed the k-truss
k-mutual-friend subgraph. DN-graph was proposed in [28]
which is closely related k-truss. Unlike k-truss, the problem
of mining the DN-graphs is NP-hard. The maximal k-edge
connected subgraph (MkCS), also called structural cohesion
in sociology [21], is typically more cohesive than k-core and
k-truss. Recently, several efficient algorithms were proposed
to compute the MkCS. For instance, in [35], Zhou et al.
proposed several pruning techniques to speed up the MkCS
mining algorithm. In [4], Chang et al. presented a linear time
algorithmbased on a graph decomposition framework. In [1],
Akiba et al. proposed a linear time randomized algorithm for
the same problem based on a random edge contraction tech-
nique.

123

http://www1.se.cuhk.edu.hk/~rhli/paper/Instruction_vldbj.pdf
http://www1.se.cuhk.edu.hk/~rhli/paper/Instruction_vldbj.pdf

776 R.-H. Li et al.

9 Conclusion

We study a problem of finding the top-r influential commu-
nities in a network. We propose a new community model
called k-influential community to capture the influence of
a community. To find the top-r k-influential communities
efficiently, we propose a linear time online search algorithm
and an optimal ICPS-based algorithm. The ICPS (influen-
tial community-preserved structure) only takes linear space,
and can be constructed efficiently. We also develop an effi-
cient algorithm to maintain the ICPS when the network is
frequently updated. Additionally, we devise an I/O-efficient
algorithm to find the top-r k-influential communities in a
disk-resident graph under the assumption of U = O(n).
Finally, extensive experiments on six web-scale real-world
networks demonstrate the efficiency and effectiveness of our
algorithms. For a future direction, it would be interesting to
develop a distributed or parallel algorithm to compute the
ICPS. Since the proposed algorithm is a sequential algo-
rithm, it is very difficult to generalize it to the distributed or
parallel setting.We believe that devising such a distributed or
parallel algorithm requires new techniques, which deserves
to further investigate.

Acknowledgements The work was supported in part by (i) NSFC
Grants (61402292,U1301252),NSF-ShenzhenGrants (JCYJ20150324-
140036826, JCYJ20140418095735561), and Startup Grant of Shen-
zhen Kongque Program (827/000065); (ii) ARC DE140100999 and
ARC DP160101513; (iii) Research Grants Council of the Hong
Kong SAR, China, 14209314 and 14221716; (iv) China 863 Grants:
2015AA015305.

References

1. Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of max-
imal k-edge-connected subgraphs in large networks by random
contraction. In: CIKM (2013)

2. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decom-
position of networks. CoRR cs.DS/0310049 (2003)

3. Batagelj, V., Zaversnik, M.: Fast algorithms for determining (gen-
eralized) core groups in social networks. Adv. Data Anal. Classif.
5(2), 129–145 (2011)

4. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently
computing k-edge connected components via graph decomposi-
tion. In: SIGMOD (2013)

5. Cheng, J., Ke,Y., Chu, S., Özsu,M.T.: Efficient core decomposition
in massive networks. In: ICDE (2011)

6. Cheng, J., Ke, Y., Fu, A.W.C., Yu, J.X., Zhu, L.: Finding maximal
cliques in massive networks. ACMTrans. Database Syst. 36(4), 21
(2011)

7. Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal
clique enumeration with limited memory. In: KDD (2012)

8. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algo-
rithms. SIAM J. Comput. 14(1), 210–223 (1985)

9. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis.
Technique report (2005)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

11. Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of
overlapping communities. In: SIGMOD (2013)

12. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communi-
ties in large graphs. In: SIGMOD (2014)

13. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–
5), 75–174 (2010)

14. Gregori, E., Lenzini, L., Orsini, C.: k-dense communities in the
internet as-level topology graph. Comput. Netw. 57(1), 213–227
(2013)

15. Hu, X., Tao, Y., Chung, C.W.: Massive graph triangulation. In:
SIGMOD (2013)

16. Huang, X., Cheng, H., Qin, L., Tian,W., Yu, J.X.: Querying k-truss
community in large and dynamic graphs. SIGMOD (2014)

17. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, Hoboken
(1995)

18. Li, R., Qin, L., Yu, J.X., Mao, R.: Influential community search in
large networks. PVLDB 8(5), 509–520 (2015)

19. Li, R., Yu, J.X., Mao, R.: Efficient core maintenance in large
dynamic graphs. IEEE Trans. Knowl. Data Eng. 26(10), 2453–
2465 (2014)

20. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Arboricity, h-index,
and dynamic algorithms. Theor. Comput. Sci. 426, 75–90 (2012)

21. Moody, J., White, D.R.: Structural cohesion and embeddedness: a
hierarchical concept of social groups. Am. Sociol. Rev. 68, 103–
127 (2003)

22. Saito, K., Yamada, T.: Extracting communities from complex net-
works by the k-dense method. In: ICDM Workshops (2006)

23. Sariyüce, A.E., Gedik, B., Jacques-Silva, G.,Wu,K.L., Çatalyürek,
Ü.V.: Streaming algorithms for k-core decomposition. PVLDB
6(6), 433–444 (2013)

24. Seidman, S.B.:Network structure andminimumdegree. Soc.Netw.
5(3), 269–287 (1983)

25. Sozio, M., Gionis, A.: The community-search problem and how to
plan a successful cocktail party. In: KDD (2010)

26. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural
diversity in social contagion. PNAS (2011)

27. Wang, J., Cheng, J.: Truss decomposition in massive networks.
PVLDB 5(9), 812–823 (2012)

28. Wang, N., Zhang, J., Tan, K.L., Tung, A.K.H.: On triangulation-
based dense neighborhood graphs discovery. PVLDB 4(2), 58–68
(2010)

29. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o efficient core
graph decomposition at web scale. In: ICDE (2016)

30. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community
detection in networks: the state-of-the-art and comparative study.
ACM Comput. Surv. 45(4), 43 (2013)

31. Zhang, Y., Parthasarathy, S.: Extracting, analyzing and visualizing
triangle k-core motifs within networks. In: ICDE (2012)

32. Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: com-
puting sccs in massive graphs. In: SIGMOD (2013)

33. Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O
efficient depth-first search. In: SIGMOD (2015)

34. Zhao, F., Tung, A.K.H.: Large scale cohesive subgraphs discovery
for social network visual analysis. PVLDB 6(2), 85–96 (2012)

35. Zhou, R., Liu, C., Yu, J.X., Liang,W., Chen, B., Li, J.: Findingmax-
imal k-edge-connected subgraphs from a large graph. In: EDBT
(2012)

123

	Finding influential communities in massive networks
	Abstract
	1 Introduction
	2 Problem statement
	3 Online search algorithms
	3.1 The basic algorithm
	3.2 The DFS-based algorithm

	4 ICPS-based search algorithms
	4.1 The influential community-preserved structure (ICPS)
	4.2 The basic ICPS construction algorithm
	4.3 The new ICPS construction algorithm
	4.4 Query processing algorithm

	5 Update in the dynamic network
	5.1 Handling edge insertion
	5.2 Handling edge deletion

	6 The I/O efficient algorithm
	7 Performance studies
	7.1 Testing main memory algorithms
	7.2 Testing I/O efficient algorithms
	7.3 Case studies

	8 Related work
	9 Conclusion
	Acknowledgements
	References

