
77

Maximal Defective Clique Enumeration

QIANGQIANG DAI, RONG-HUA LI, MEIHAO LIAO, and GUOREN WANG, Beijing Institute

of Technology, China

Maximal clique enumeration is a fundamental operator in graph analysis. The model of clique, however, is

typically too restrictive for real-world applications as it requires an edge for every pair of vertices. To remedy

this restriction, practical graph analysis applications often resort to find relaxed cliques as alternatives. In

this work, we investigate a notable relaxed clique model, called 𝑠-defective clique, which allows at most 𝑠

edges to be missing. Similar to the complexity of maximal clique enumeration, the problem of enumerating all

maximal 𝑠-defective cliques is also NP-hard. To solve this problem, we first develop a new polynomial-delay

algorithm based on a carefully-designed reverse search technique, which can output two consecutive results

within polynomial time. To achieve better practical efficiency, we propose a branch-and-bound algorithm

with a novel pivoting technique. We prove that the time complexity of this algorithm depends only on 𝑂 (𝛼𝑛𝑠)
or 𝑂 (𝛼𝛿𝑠) when using a degeneracy ordering optimization, where 𝛼𝑠 is a positive real number strictly less

than 2, and 𝛿 (𝛿 < 𝑛) is the degeneracy of the graph. To our knowledge, this is the first algorithm that can

break the 𝑂 (2𝑛) time complexity to enumerate all maximal 𝑠-defective cliques (𝑠 > 0). We also develop

several new pruning techniques to further improve the efficiency of our branch-and-bound algorithm to

enumerate all relatively-large maximal 𝑠-defective cliques. In addition, we further generalize our pivot-based

branch-and-bound algorithm to enumerate all maximal subgraphs satisfying a hereditary property. Here we

call a graph meeting the hereditary property if all its subgraphs have the same property as itself. Finally,

extensive experiments on 11 datasets demonstrate the efficiency, effectiveness, and scalability of the proposed

solutions.

CCS Concepts: • Mathematics of computing→ Graph enumeration.

Additional Key Words and Phrases: cohesive subgraph, 𝑠-defective clique, reverse search, branch-and-bound

ACM Reference Format:
Qiangqiang Dai, Rong-Hua Li, Meihao Liao, and Guoren Wang. 2023. Maximal Defective Clique Enumeration.

Proc. ACM Manag. Data 1, 1, Article 77 (May 2023), 26 pages. https://doi.org/10.1145/3588931

1 INTRODUCTION
Mining cohesive subgraphs in real-world networks is a fundamental problem in graph analysis.

There are numerous applications that can be modeled as a cohesive subgraph mining problem,

including detecting communities in social networks [5, 20, 27], mining protein complexes in protein-

protein interaction (PPI) networks [24, 50], and statistical analysis in financial networks [8, 9]. The

classic maximal clique model which requires an edge for every pair of vertices is widely used to

represent cohesive subgraphs, due to its densely-connected interiors and the existence of many

advanced approaches to find all maximal cliques [10, 19, 21, 38, 43, 47].

However, the condition that requires all possible relations to exist in the community may be too

restrictive for real-world applications, since noises or faults may occur in real-world networks [17]

Authors’ address: Qiangqiang Dai, qiangd66@gmail.com; Rong-Hua Li, lironghuabit@126.com; Meihao Liao, mhliao@bit.

edu.cn; Guoren Wang, wanggrbit@126.com, Beijing Institute of Technology, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/5-ART77 $15.00

https://doi.org/10.1145/3588931

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

HTTPS://ORCID.ORG/0000-0002-8569-6558
HTTPS://ORCID.ORG/0000-0001-8658-6599
HTTPS://ORCID.ORG/0000-0002-5808-3131
HTTPS://ORCID.ORG/0000-0002-0181-8379
https://doi.org/10.1145/3588931
https://orcid.org/0000-0002-8569-6558
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0002-5808-3131
https://orcid.org/0000-0002-0181-8379
https://doi.org/10.1145/3588931

77:2 Qiangqiang Dai et al.

and the interactions between individuals in a community can be accomplished through non-direct

relationships [40]. To remedy this issue, many relaxed clique models have been developed as

alternatives to represent cohesive subgraphs, such as 𝑠-defective clique [50], 𝑘-plex [7, 17, 44, 54],

𝑟 -clique [6, 35], and 𝛾-quasi-clique [34, 41]. In this paper, we focus mainly on the 𝑠-defective clique

model, as it can well approximate the clique model [50].

Given a graph 𝐺 , a subset 𝑆 of vertices in 𝐺 is a maximal 𝑠-defective clique if (1) the subgraph

induced by 𝑆 has at least

(|𝑆 |
2

)
− 𝑠 edges, and (2) there does not exist any vertex subset satisfying (1)

and containing 𝑆 . For example, consider the graph 𝐺 shown in Fig. 1(a). It is easy to check that

Fig.1(b) is a maximal 1-defective clique and Fig. 1(c) is a maximal 2-defective clique. Clearly, the

clique is the special case of the 𝑠-defective clique when 𝑠 = 0. In addition, many relaxed clique

models are also closely related to the 𝑠-defective clique. For instance, an 𝑠-defective clique must be

an (𝑠 + 1)-plex, where a 𝑘-plex is a subgraph in which every vertex is adjacent to all but at most

𝑘 vertices [44]. For any 𝑠-defective clique with size larger than 𝑠 + 1, it is also a 2-clique [35] (a

subgraph in which the distance between each pair of vertices is no larger than 2 in the original

graph), since the diameter of such an 𝑠-defective clique is always no larger than 2 (see Property 2).

Compared to another classic relaxed clique model 𝛾-quasi-clique [41], the 𝑠-defective clique

model also has its own advantages. Specifically, the key difference between these two models is

that the 𝑠-defective clique satisfies the hereditary property (Property 1 in Section 2), while the

𝛾-quasi-clique does not. As a consequence, 𝑠-defective clique has two nice features. The first is that

the structure of the 𝑠-defective clique is typically more robust than that of the 𝛾-quasi-clique. This

is because the removal of any subset from an 𝑠-defective clique does not break its structure (i.e., the

remaining subgraph is still an 𝑠-defective clique). The second is that the algorithms for enumerating

𝑠-defective cliques are usually much more efficient than those for enumerating 𝛾-quasi-cliques,

since the maximality checking procedure for hereditary subgraph models is much easier than those

models that do not satisfy the hereditary property. Based on these analyses, the 𝑠-defective clique

model can be used in many real-world applications, and three concrete examples are listed below.

Implicit interactions prediction. Intuitively, given any two non-adjacent vertices, if their com-

mon neighbors in the group form a clique, then these two vertices are likely to be connected. This

means that the missing edges in an 𝑠-defective clique have a strong prediction for the implicit

interactions in the graph if 𝑠 is small. Thus, in real-world networks, such as PPI networks, collabo-

ration networks, and social networks, one can make use of 𝑠-defective cliques to predict implicit

interactions. A notable example is that Yu et al. [50] have successfully applied the 𝑠-defective clique

model to detect implicit protein interactions in PPI networks, which is mainly based on the fact

that the protein complex is often considered as a complete subgraph [3, 23].

Community detection in social networks. In an 𝑠-defective clique, it only allows at most 𝑠

edges to be missing, which ensures that each 𝑠-defective clique is densely-connected when 𝑠 is

small. In real-world networks, such as social networks, communication networks, and web graphs,

the communities usually can be modeled as tightly-connected subgraphs. Note that the classic

clique model has been widely used for these tasks [5, 11, 39, 46]. However, real-life networks are

usually constructed from empirical data, and there likely exist several links missed during the

data collection procedure [7]. Thus, it is more suitable to adopt the 𝑠-defective clique model to

identify communities compared to the clique model, as they allow up to 𝑠 missing links. As shown

in our experiments (Exp-7 and Exp-8), the 𝑠-defective clique model can indeed detect meaningful

communities that cannot be identified by the classic clique model.

Statistical analysis in financial networks. In financial networks, such as the stock market

network, the vertices and edges can be represented as financial instruments and the correlations

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

Maximal Defective Clique Enumeration 77:3

6

5 4

32

1

(a) The original graph

6

5

2

1

(b) 1-defective clique

5 4

32

1

(c) 2-defective clique

Fig. 1. A running example graph 𝐺 .

between instruments, respectively. Real-world applications often need to identify groups of financial

instruments in such networks whose prices may collectively fluctuate. The classic clique model has

been successfully used for these applications [8, 9]. Since a clique is a special case of an 𝑠-defective

clique, the use of 𝑠-defective clique can be a good alternative for these applications. Moreover,

compared to the classic clique model, a striking advantage of the 𝑠-defective clique model is that it

can also identify the indirectly-linked but closely-related financial instruments.

Although the maximal 𝑠-defective clique model can be used for many applications, an efficient

algorithm for enumerating all maximal 𝑠-defective cliques on large graphs is still lacking. To our

knowledge, the only existing algorithm to identify maximal 𝑠-defective cliques was proposed in

[50]. The main idea of this algorithm is that it first makes use of the Bron-Kerbosch (BK) algorithm

[10] to enumerate all maximal cliques and then determines whether each possible combination

of maximal cliques can form an 𝑠-defective clique. Clearly, such an algorithm is rather inefficient

and requires very high memory overheads to store the maximal cliques. More importantly, this

algorithm typically cannot obtain all maximal 𝑠-defective cliques of a graph. For instance, consider

the graph 𝐺 shown in Fig. 1(a), it is easy to see that {𝑣1, 𝑣2, 𝑣3, 𝑣5} is a maximal 1-defective clique.

Such a maximal 1-defective clique, however, does not belong to any pair of maximal cliques, thus

cannot be identified by the algorithm proposed in [50].

To overcome this problem, we develop two novel approaches to enumerate all maximal 𝑠-defective

cliques. We show that both of our proposed algorithms have non-trivial worst-case time complexity

guarantees. To our knowledge, our algorithms are the best algorithms so far in terms of the

worst-case time complexity. The main contributions of our work are summarized as follows.

A novel polynomial-delay algorithm. Our first solution for enumerating all maximal 𝑠-defective

cliques is a polynomial-delay algorithm based on a reverse search technique [2], which can output

any two consecutive results within polynomial time. Specifically, we first propose a novel graph-like

structure to characterize the relationships of all maximal 𝑠-defective cliques in a given graph. Such

a new structure provides us with guidelines on which possible results can be jumped from one to

the other. Based on this, we then propose a reverse search procedure to recursively enumerate each

result. We prove that the delay of any two consecutive results output by our algorithm is bounded

in 𝑂 (𝑛2 Δ2𝑠+1

4
𝑠) time, where 𝑛 is the number of vertices of the graph, Δ is the size of the maximum

𝑠-defective clique, and 𝑠 is a small constant. To our knowledge, this is the first theoretical result on

enumerating maximal 𝑠-defective cliques within polynomial-delay time.

New branch-and-bound enumeration algorithms. Although our polynomial-delay algorithm

has a nice theoretical property, its practical performance may be inefficient for large real-world

graphs. To obtain a more practical solution, we propose a new branch-and-bound enumeration

algorithm with a carefully-designed pivoting technique. We prove that the time complexity of

our branch-and-bound algorithm depends mainly on 𝑂 (𝛼𝑛𝑠), where 𝛼𝑠 is a positive real number

and strictly less than 2. To our knowledge, this is the first algorithm that breaks the 𝑂 (2𝑛) barrier
of the basic branch-and-bound algorithm for maximal 𝑠-defective clique enumeration. To boost

the efficiency, we also develop an improved branch-and-bound algorithm with a degeneracy-

ordering optimization technique. We show that the worst-case time complexity of such an improved

algorithm depends mainly on 𝑂 (𝛼𝛿𝑠). Here 𝛿 denotes the degeneracy of the graph which is often

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

77:4 Qiangqiang Dai et al.

very small for large real-world graphs [21, 31]. In addition, several non-trivial and efficient pruning

techniques are also proposed to further improve the performance of our algorithms.

A general pivoting paradigm. Inspired by the proposed pivot-based branch-and-bound algo-

rithms, we further develop a general pivoting paradigm for enumerating all maximal subgraphs

that satisfy the hereditary property. Here we call a graph meeting the hereditary property if all its

subgraphs have the same property as itself (e.g., both cliques and 𝑠-defective cliques satisfy the

hereditary property). We believe that the proposed general pivoting paradigm could be of indepen-

dent interests, which can provide useful guidelines to devise efficient pivot-based algorithms for

other maximal hereditary subgraph enumeration problems.

Extensive experimental evaluations. We conduct extensive experiments to evaluate the ef-

ficiency, effectiveness, and scalability of the proposed algorithms on 11 real-world graphs. The

experimental results show that (1) the proposed polynomial-delay algorithm performs well in terms

of time delay and also achieve good practical performance when processing small dense graphs;

(2) the proposed pivot-based algorithms consistently achieve the best performance, which can be

several orders of magnitude faster than the baseline algorithms. In addition, three concrete case

studies further illustrate the effectiveness of the studied model. For reproducibility purpose, the

source code of this work is available at https://github.com/qq-dai/DefectiveClique.

2 PROBLEM STATEMENT
Let 𝐺 = (𝑉 , 𝐸) be the undirected and unweighted graph, where 𝑉 and 𝐸 are the set of vertices and

edges respectively. Denote by𝑛 = |𝑉 | and𝑚 = |𝐸 | the number of vertices and edges of𝐺 , respectively.

The complementary graph of 𝐺 is denoted by 𝐺 = (𝑉 , 𝐸), where each edge (𝑢, 𝑣) ∈ 𝐸 if and only if

(𝑢, 𝑣) ∉ 𝐸. For a vertex 𝑣 , the set of neighbors in 𝐺 is defined as 𝑁𝑣 (𝐺) = {𝑢 ∈ 𝑉 | (𝑣,𝑢) ∈ 𝐸}, and
the degree of 𝑣 in 𝐺 is 𝑑𝑣 (𝐺) = |𝑁𝑣 (𝐺) |. Similarity, we use 𝑁 𝑣 (𝐺) and 𝑑𝑣 (𝐺) to denote the set of

neighbors and the degree of 𝑣 in𝐺 respectively. Given a vertex subset 𝑆 of 𝑉 , we let𝐺 (𝑆) = (𝑆, 𝐸𝑆)
be the subgraph of 𝐺 induced by 𝑆 , where 𝐸𝑆 = {(𝑢, 𝑣) ∈ 𝐸 |𝑢, 𝑣 ∈ 𝐶}. If the context is clear, we
abbreviate 𝑁𝑣 (𝐺 (𝑆)) to 𝑁𝑣 (𝑆) and 𝑑𝑣 (𝐺 (𝑆)) to 𝑑𝑣 (𝑆) respectively.

A vertex subset 𝑆 of𝑉 is a clique if every pair of vertices is adjacent to each other (i.e., (𝑢, 𝑣) ∈ 𝐸
for each 𝑢, 𝑣 ∈ 𝑆). We refer to a clique 𝑆 as a maximal clique if no vertex in 𝑉 \ 𝑆 is adjacent to

all vertices in 𝑆 . The problem of finding all maximal cliques on a graph has been well studied

[10, 19, 21, 38, 43, 47]. However, as we discussed in Section 1, the concept of clique may be overly

restrictive for many real-world applications [40], thus relaxed clique models are often used as

alternatives in practice [6, 7, 17, 34, 50]. In this paper, we focus mainly on a notable relaxed clique

model, called 𝑠-defective clique, which was first proposed in [50].

Definition 1 (Maximal 𝑠-defective clique). Given a graph 𝐺 and an integer 𝑠 , a maximal 𝑠-defective
clique 𝑆 is a subset of vertices of 𝐺 if (1) the subgraph 𝐺 (𝑆) induced by 𝑆 contains at least

(|𝑆 |
2

)
− 𝑠

edges, and (2) there does not exist any vertex subset satisfying (1) and containing 𝑆 .

Clearly, an 𝑠-defective clique is a clique when 𝑠 = 0, which indicates that the clique is a special

case of the 𝑠-defective clique. We then show that the 𝑠-defective clique has the following two useful

properties, which will be used to devise our enumeration algorithms. Note that due to the space

limit, all detailed proofs are omitted in this paper. We provide a full version with all proofs in [18].

Property 1 (Hereditary). Given an arbitrary 𝑠-defective clique 𝑆 of 𝐺 , for each subset 𝐻 of 𝑆 , 𝐻 is
also an 𝑠-defective clique of 𝐺 .

By Property 1, it is easy to check that an 𝑠-defective clique 𝑆 is maximal in𝐺 if there is no vertex

in 𝑉 \ 𝑆 that can be added to 𝑆 .

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

https://github.com/qq-dai/DefectiveClique

Maximal Defective Clique Enumeration 77:5

Property 2. Given an 𝑠-defective clique 𝑆 of 𝐺 , the diameter of 𝐺 (𝑆) is at most 2 if |𝑆 | ≥ 𝑠 + 2.
By Property 2, each 𝑠-defective clique with size no less than 𝑠 + 2 must be densely-connected,

since the diameter of the subgraph is no larger than 2. Thus, in real-world applications, we are often

interested in enumerating all maximal 𝑠-defective cliques with size 𝑞 no less than 𝑠 + 2. To obtain

a good relaxation of a clique, the parameter 𝑠 in the 𝑠-defective clique model is generally very

small (e.g., 𝑠 ≤ 5), so that the size constraint 𝑞 ≥ 𝑠 + 2 is easy to meet for relatively-large maximal

𝑠-defective cliques. In this paper, we also investigate the problem of enumerating all relatively-large

maximal 𝑠-defective cliques. Below, we formally define our problems.

Problem definition. Given an undirected graph 𝐺 and a parameter 𝑠 ≥ 1, the goal of this paper is

to enumerate: (1) all maximal 𝑠-defective cliques, and (2) all maximal 𝑠-defective cliques with size 𝑞

no less than 𝑠 + 2 (i.e., 𝑞 ≥ 𝑠 + 2).
It has been known that finding the maximum 𝑠-defective clique is NP-hard [13, 48], thus the

problem of enumerating all maximal 𝑠-defective cliques is also NP-hard. Therefore, there does not

exist a polynomial-time algorithm to solve our problems unless NP = P.

Can existing solutions be used to solve our problems? Note that many advanced techniques

have been developed to solve the problems of enumerating maximal cliques [10, 19, 21, 38, 43, 47]

and maximal 𝑘-plexes [7, 17, 44, 49, 54], which are closely related to our problem. Unfortunately,

we show that none of them can be used to solve our problem. The detailed explanations are given

as follows.

The notable solutions for enumerating maximal cliques are the classic Bron-Kerbosch (BK)

algorithm [10] and its variants [21, 38, 47] which use a pivoting technique to reduce recursive calls.

The idea of such a pivoting technique is that given a recursion with 𝑆 and 𝐶 , if a vertex 𝑣 ∈ 𝐶 is

selected as a pivot, then only vertices in 𝐶 \ 𝑁𝑣 (𝐺) are used to expand 𝑆 , where 𝑆 and 𝐶 are the

current partial clique and the candidate set used to expand 𝑆 , respectively. Thus, many branches

can be pruned by such a pivoting approach. However, such an idea cannot be used to enumerate

maximal 𝑠-defective cliques, since for a vertex 𝑣 ∈ 𝐶 , some neighbor vertices of 𝑣 in 𝐶 probably

form a maximal 𝑠-defective clique with 𝑆 . For instance, given a graph shown in Fig. 1(a) and a

recursive call with 𝑆 = {𝑣6} and 𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, then we can see that {𝑣4, 𝑣5, 𝑣6} is a maximal

1-defective clique. If 𝑣2 is selected as a pivot, the result {𝑣4, 𝑣5, 𝑣6} can be ignored by such a pivoting

technique, because {𝑣4, 𝑣5} ⊂ 𝑁𝑣2 (𝐺). Since (𝑣4, 𝑣5) ∈ 𝐸, it is also difficult to design algorithms by

checking 𝑠 missing edges in𝐺 ({𝑣4, 𝑣5}) to identify whether 𝑣4 and 𝑣5 should expand {𝑣6}. Thus, we
cannot use this pivoting technique to solve our problems.

In maximal 𝑘-plex enumeration, the state-of-the-art approaches are developed in [49, 54], which

pick the vertex 𝑣 ∈ 𝐶 that has the smallest degree in 𝐺 (𝑆 ∪𝐶) to perform the branch-and-bound

enumeration procedure. This idea is based on the observation that if the smallest degree of vertices

in 𝐺 (𝑆 ∪𝐶) is no less than |𝑆 ∪𝐶 | − 𝑘 , then the current set 𝑆 ∪𝐶 is exactly a 𝑘-plex. Therefore,

no further sub-recursive calls are needed, and thus the current recursive call can be terminated.

However, for maximal 𝑠-defective clique enumeration, there is no similar result. The only available

result is that if the smallest degree of vertices in 𝐺 (𝑆 ∪𝐶) is no less than |𝑆 ∪𝐶 | − 1, then 𝑆 ∪𝐶 is

an 𝑠-defective clique. However, in the recursive calls of enumerating maximal 𝑠-defective cliques,

the subgraph 𝐺 (𝑆 ∪ 𝐶) is often difficult to meet this property. This is because for any maximal

𝑠-defective clique 𝑆 (𝑠 ≥ 1), the smallest degree of vertices in 𝐺 (𝑆) is probably |𝑆 | − 1 − 𝑠 . Thus,
the techniques developed in [49, 54] are also not applicable to enumerate all maximal 𝑠-defective

cliques.

Based on the above analyses, new approaches need to be developed to efficiently solve the

maximal 𝑠-defective clique enumeration problems. In the following sections, we will present two

different types of algorithms to address the issues.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

77:6 Qiangqiang Dai et al.

3 A POLYNOMIAL-DELAY ALGORITHM
In this section, we develop an output-sensitive algorithm to enumerate all maximal 𝑠-defective

cliques whose time complexitymainly relies to the number of results. A nice feature of this algorithm

is that it can output two consecutive maximal 𝑠-defective cliques within polynomial time. Such an

algorithm is inspired by the classic reverse search technique [2], which was originally developed

for enumerating vertices in polyhedra. Below, we first briefly describe the reverse search technique

and then present our solutions.

3.1 A Brief Overview of Reverse Search
To make use of the reverse search technique for enumeration, a graph-like structure which captures

the relationships of all enumeration results must be defined first, which is shown in Definition 2.

Definition 2 ([2]). Given a graph𝐺 , let C be the set of all objects of𝐺 that needs to be output. Then,
the graph-like structure is defined as follows:

• 𝑅𝑜𝑜𝑡 : a unique root object in 𝐺 can be found in polynomial time.
• Neighbors: the set of neighbors of an object 𝑆 ∈ C, denoted by Γ(𝑆), i.e., it is possible for 𝑆 to jump
to each object in Γ(𝑆).
• Parent: projection from a non-root object 𝑆 to its unique neighbor by a local search function 𝑓 (𝑆),
which satisfies that the 𝑟𝑜𝑜𝑡 object can be found by a finite number of local search functions from
𝑆 , i.e., 𝑓 𝑘 (𝑆) = 𝑓 (𝑓 (...𝑓 (𝑆))) = 𝑟𝑜𝑜𝑡 , where 𝑘 is a finite positive integer.

Based on Definition 2, it is easy to see that all objects in C form a connected graph, revealing

which objects are allowed to jump from one to another. Then, with the parent relationship and the

local search function, any non-root object in C has a unique and acyclic path from it to the root

object, which forms a spanning tree. Thus, all objects can be output by a depth-first search (DFS)

starting from the root object in the graph. Such an enumeration technique is called reverse search

which is detailed in Algorithm 1. As shown in [2], Algorithm 1 has several interesting theoretical

properties.

Theorem 3.1. Let 𝑡 (𝑓) and 𝑡 (Γ) be the time used to compute 𝑓 and Γ. Then, the time complexity of
Algorithm 1 is 𝑂 (𝐾𝜔 (𝑡 (Γ) + 𝑡 (𝑓))), where 𝐾 = |C| and 𝜔 =𝑚𝑎𝑥𝑆∈C |Γ(𝑆) | .

Theorem 3.2. Algorithm 1 is polynomial delay if both 𝑓 and Γ can be computed within polynomial
time.

3.2 The Proposed Reverse Search Algorithm
As shown in Algorithm 1, the framework of the reverse search technique is quite implicit; and

the definition of a suitable graph-like structure for different problems is also quite challenging. In

the following, we propose a novel graph-like structure to characterize the relationships among

all maximal 𝑠-defective cliques of a graph 𝐺 , based on which a new enumeration algorithm is

proposed.

Devising the graph-like structure. Given a set 𝑆 of vertices, we denote by 𝑆<𝑣 the subset

of vertices in 𝑆 that are smaller than 𝑣 , i.e., 𝑆<𝑣 = {𝑢 ∈ 𝑆 |𝑢 < 𝑣}. Similarly, 𝑆≤𝑣 is defined as

𝑆≤𝑣 = {𝑢 ∈ 𝑆 |𝑢 ≤ 𝑣}. For two vertex sets 𝑆1 and 𝑆2 of 𝐺 , we call 𝑆1 < 𝑆2 if 𝑆1 is lexicographically

smaller than 𝑆2. Then, given a set 𝑆 of𝐺 , we use 𝐸𝑥𝑡𝑒𝑛𝑑 (𝑆) to denote the lexicographically smallest

maximal 𝑠-defective clique that contains 𝑆 . For instance, given a graph shown in Fig. 1(a) and 𝑠 = 1,

suppose that 𝑆 = {𝑣2, 𝑣5}, we have 𝐸𝑥𝑡𝑒𝑛𝑑 (𝑆) = {𝑣1, 𝑣2, 𝑣3, 𝑣5}. Based on these notations, we define

the graph-like structure for enumerating all maximal 𝑠-defective cliques as follows.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

Maximal Defective Clique Enumeration 77:7

Algorithm 1: The reverse search framework [2].

Input: The graph 𝐺 .
Output: All objects C of 𝐺 .

1 Let 𝑆0 be a root object in 𝐺 ;

2 𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝑆0);
3 Function: 𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝑆)
4 Output 𝑆 as a solution;

5 foreach 𝑆 ′ ∈ Γ(𝑆) do
6 if 𝑓 (𝑆 ′) = 𝑆 then 𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝑆 ′) ;

Definition 3 (Root). Given a graph 𝐺 , we define the root node of 𝐺 as the maximal 𝑠-defective
clique which is the lexicographically smallest among all maximal 𝑠-defective cliques, i.e., 𝑟𝑜𝑜𝑡 =

𝐸𝑥𝑡𝑒𝑛𝑑 ({𝑣1}).
Definition 4 (Neighbors). Let C be the set of all maximal 𝑠-defective cliques of 𝐺 . For a maximal

𝑠-defective clique 𝑆 , its neighbor set is defined as Γ(𝑆) = {𝑆 ′ ∈ C|𝑆 ′ ∩ 𝑆 ≠ ∅}.
Given a maximal 𝑠-defective clique 𝑆 of𝐺 , we refer to a vertex 𝑣 ∈ 𝑆 as the critical vertex, denoted

by 𝜋𝑆 , if 𝑣 is smallest in 𝑆 such that 𝐸𝑥𝑡𝑒𝑛𝑑 (𝑆≤𝑣) = 𝑆 , i.e., 𝜋𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑣∈𝑆 {𝐸𝑥𝑡𝑒𝑛𝑑 (𝑆≤𝑣) = 𝑆}. Then,
we define the parent of maximal 𝑠-defective clique 𝑆 in 𝐺 .

Definition 5 (Parent). Given a graph 𝐺 and two maximal 𝑠-defective cliques 𝐴 and 𝐵, we call 𝐴 the
parent of 𝐵 if 𝐴 ∈ Γ(𝐵) and 𝐴 = 𝐸𝑥𝑡𝑒𝑛𝑑 (𝐵<𝑣𝑝), where 𝑣𝑝 = 𝜋𝐵 .

Example 1. Given a graph 𝐺 shown in Fig. 1(a), let 𝑆1 = {𝑣1, 𝑣2,
𝑣4, 𝑣5} and 𝑆2 = {𝑣2, 𝑣3, 𝑣4, 𝑣5} be the two maximal 1-defective cliques of 𝐺 . For a maximal 1-defective
clique 𝑆3 = {𝑣4, 𝑣5, 𝑣6}, we can see that the parent of 𝑆3 is 𝑆1 instead of 𝑆2. Although both 𝑆1 and 𝑆2 are
the neighbors of 𝑆3, the critical vertex 𝜋𝑆3 of 𝑆3 is 𝑣6 and we have 𝐸𝑥𝑡𝑒𝑛𝑑 (𝑆3<𝑣6) = 𝐸𝑥𝑡𝑒𝑛𝑑 ({𝑣4, 𝑣5}) =
{𝑣1, 𝑣2, 𝑣4, 𝑣5} = 𝑆1. Thus, only 𝑆1 can be the parent of 𝑆3.

Determining all neighbors.Although the graph-like structure of maximal 𝑠-defective cliques of𝐺

has been established, it is still unclear how to compute all neighbors of a maximal 𝑠-defective clique.

Our solution to tackle this issue is based on the following observation. Note that in Algorithm 1,

only the child nodes of a maximal 𝑠-defective clique 𝑆 (here the child nodes represent the maximal

𝑠-defective cliques whose parent is 𝑆) have an opportunity to enter into the next recursion (which

are what we exactly want), while the other neighbors can be ignored. Thus, we only need to find

all possible child nodes of a maximal 𝑠-defective clique instead of all neighbor nodes.

By Definition 5, for the parent node 𝐴 of a maximal 𝑠-defective clique 𝑆 , we have the following

two relationships: 1) 𝜋𝑆 ∈ 𝑆 \𝐴 and 2) 𝑆<𝜋𝑆 ⊂ 𝐴. This means that, for any two maximal 𝑠-defective

cliques𝐴 and 𝐵 adjacent to each other, if they do not satisfy these two relationships,𝐴 (or𝐵) must not

be the child node of 𝐵 (or 𝐴). For example, consider a maximal 1-defective clique 𝑆1 = {𝑣1, 𝑣2, 𝑣4, 𝑣5}
shown in Fig. 1(a), and a neighbor node 𝑆2 = {𝑣2, 𝑣3, 𝑣4, 𝑣5} of 𝑆1. We can see that 𝜋𝑆2 = 𝑣4 and

𝑆2<𝑣4 = {𝑣2, 𝑣3} ⊄ 𝑆1, Then, 𝑆2 is not the child node of 𝑆1 and such a node can be omitted if 𝑆1 being

processed.

As a consequence, all possible child nodes of the maximal 𝑠-defective clique can be computed

by the following approach. Given a parent node 𝑆 , for each vertex 𝑢 ∉ 𝑆 of 𝐺 , we first find each

possible subset 𝑆 ′ ⊆ 𝑆<𝑢 satisfying that 𝑆 ′ ∪ {𝑢} is an 𝑠-defective clique. Then, we use the 𝐸𝑥𝑡𝑒𝑛𝑑
function to guarantee the maximality so that the possible child nodes of 𝑆 containing 𝑆 ′ ∪ {𝑢} can
be obtained. Interestingly, we also notice that 𝑆 ′ ∪ {𝑢} can be maximal in 𝐺 (𝑆<𝑢 ∪ {𝑢}), because

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

77:8 Qiangqiang Dai et al.

Algorithm 2: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑏𝑟𝑠 (𝑆,𝑢)
1 N𝑆 ← ∅; 𝑋 ← 𝑆 \ 𝑁𝑢 (𝐺); 𝑃 ← 𝑆 ∩ 𝑁𝑢 (𝐺);
2 for each 𝐼 ⊆ 𝑋 s.t. |𝐼 | ≤ 𝑠 do
3 𝑆 ′ ← 𝐼 ∪ 𝑃 ∪ {𝑢};
4 if 𝑆 ′ is the maximal in 𝐺 (𝑆 ∪ {𝑢}) then
5 Add 𝑆 ′ into N𝑆 ;
6 else if the missing edges in 𝐺 (𝑆 ′) is larger than 𝑠 then
7 Let 𝑠′ be the number of missing edges in 𝐺 (𝑆 ′) (𝑠′ ≤ 𝑠 + |𝐼 |);
8 for each 𝐼 ′ ⊆ 𝑃 s.t. |𝐼 ′ | ≤ 𝑠′ − 𝑠 do
9 𝑆 ′′ ← 𝑆 ′ \ 𝐼 ′;

10 if 𝑆 ′′ is maximal in 𝐺 (𝑆 ∪ {𝑢}) then
11 add 𝑆 ′′ into N𝑆 ;

12 return N𝑆 ;

for any child node 𝐵 of 𝑆 with 𝜋𝐵 = 𝑢, it always satisfies that 𝐵<𝜋𝐵 ⊂ 𝑆 and 𝐵<𝜋𝐵 is maximal in

𝐺 (𝑉<𝜋𝐵). The detailed procedure is shown in Algorithm 2.

In Algorithm 2, it admits two parameters 𝑆<𝑢 and 𝑢, where 𝑆 is a maximal 𝑠-defective clique and

𝑢 is a vertex of 𝐺 such that 𝑢 ∉ 𝑆 (here we assume that all vertices in 𝑆 are less than 𝑢). Then, the

algorithm first initializes three sets N𝑆 , 𝑋 , and 𝑃 (line 1), where 𝑋 and 𝑃 are subset of 𝑆 in which

each vertex is non-adjacent and adjacent to 𝑢, respectively. Note that the set 𝑃 ∪ {𝑢} must be an

𝑠-defective clique in𝐺 (𝑆 ∪{𝑢}) since all vertices in 𝑃 are adjacent to𝑢 and 𝑃 is an 𝑠-defective clique.

This means that a maximal 𝑠-defective clique in 𝐺 (𝑆 ∪ {𝑢}) must contain no vertex or at most 𝑠

vertices in 𝑋 . Therefore, the algorithm recursively selects a subset 𝐼 from 𝑋 such that the size of 𝐼

does not exceed 𝑠 to detect whether 𝑆 ′ = 𝐼 ∪ 𝑃 ∪ {𝑢} is a maximal 𝑠-defective clique in 𝐺 (𝑆 ∪ {𝑢})
(lines 2-11). If not, we need to remove a subset 𝐼 ′ in 𝑃 from 𝑆 ′ to eliminate conflicts (lines 6-10).

Here the size of 𝐼 ′ is no larger than |𝐼 | since the missing edges in 𝐺 (𝑆 ′) is no larger than 𝑠 + |𝐼 |.
The overall algorithm. Equipping with the graph-like structure and the technique for computing

all possible child nodes of an 𝑠-defective clique, we can devise the reverse search algorithm for

enumerating all maximal 𝑠-defective cliques. The detailed algorithm is outlined in Algorithm 3.

In Algorithm 3, it first labels each vertex in 𝑉 with 𝑣1 to 𝑣𝑛 to ensure the lexicographical order of

each maximal 𝑠-defective clique in 𝐺 (line 1). Then, the algorithm determines the root node with

Definition 3 (line 2) and invokes the DFS enumeration procedure 𝐸𝑛𝑢𝑚 (line 3).

In 𝐸𝑛𝑢𝑚, it first determines an output order of maximal 𝑠-defective cliques (line 10 and line 17),

which is determined by the depth of the current recursion (the main purpose of this trick is to reduce

the output delay between consecutive solutions as used in [45]). Then, the procedure iteratively

selects a vertex 𝑢 ∈ 𝑉 , satisfying that 𝑢 ∉ 𝑆 and 𝑢 > 𝜋𝑆 , to continue the computations (lines 11-16).

Specifically, it first invokes Algorithm 2 to compute all possible child nodes of 𝑆 (which may

not be maximal) (line 12) and then calls the 𝐸𝑥𝑡𝑒𝑛𝑑 function to maximize them (line 14). After

that, the procedure checks each possible child node 𝑅 whether it is really a child of 𝑆 . If so, we

continue the recursion with such a child node (line 16). Finally, The procedure terminates until all

maximal 𝑠-defective cliques have been visited. An illustrative example for enumerating all maximal

𝑠-defective cliques of a graph 𝐺 is shown in Fig. 2.

Example 2. Given a graph 𝐺 shown in Fig. 1(a) and a parameter 𝑠 = 1, the graph-like structure for
each maximal 1-defective clique of𝐺 can be determined by definitions, which is shown in Fig. 2(a). The
reverse search starts from the root node 𝑆1 = {𝑣1, 𝑣2, 𝑣3, 𝑣5}, and computes all possible child nodes of 𝑆1

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

Maximal Defective Clique Enumeration 77:9

Algorithm 3: The proposed reverse search algorithm for enumerating all maximal 𝑠-

defective cliques.

Input: The graph 𝐺 and a parameter 𝑠 .

Output: All maximal 𝑠-defective cliques of 𝐺 .

1 Let 𝑣1, ..., 𝑣𝑛 be the vertices in 𝑉 ;

2 𝑆 ← 𝐸𝑥𝑡𝑒𝑛𝑑 ({𝑣1});
3 𝐸𝑛𝑢𝑚(𝑆, 0);
4 Function: 𝐸𝑥𝑡𝑒𝑛𝑑 (𝑆)
5 for 𝑖 = 1 to 𝑛 do
6 if 𝑆 ∪ {𝑣𝑖 } is the 𝑠-defective clique s.t. 𝑣𝑖 ∉ 𝑆 then
7 𝑆 ← 𝑆 ∪ {𝑣𝑖 };

8 return 𝑆 ;

9 Function: 𝐸𝑛𝑢𝑚(𝑆, 𝑖)
10 if 𝑖 is odd then Output 𝑆 ;

11 forall 𝑢 in 𝑉 \ 𝑆 s.t. 𝑢 > 𝜋𝑆 do
12 N𝑆 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑏𝑟𝑠 (𝑆<𝑢 , 𝑢);
13 for each 𝑆 ′ ∈ N𝑆 do
14 𝑅 ← 𝐸𝑥𝑡𝑒𝑛𝑑 (𝑆 ′);
15 if 𝑅 ≥ 𝑆 ′ s.t. 𝑆 = 𝐸𝑥𝑡𝑒𝑛𝑑 (𝑆 ′<𝑢) then
16 𝐸𝑛𝑢𝑚(𝑅, 𝑖 + 1);

17 if 𝑖 is even then Output 𝑆 ;

using Algorithm 2. For the first possible child node 𝑆2 = {𝑣1, 𝑣2, 𝑣4, 𝑣5}, it can be seen that the parent of
𝑆2 is exactly 𝑆1. Then, the algorithm continues the recursive call with 𝑆2 and finds the possible child
nodes of 𝑆2. Since 𝜋𝑆2 = 𝑣4, two possible child nodes 𝑆3 = {𝑣1, 𝑣2, 𝑣5, 𝑣6} and 𝑆6 = {𝑣4, 𝑣5, 𝑣6} of 𝑆2 are
detected, where only the parent of 𝑆6 is 𝑆2. The algorithm further processes the recursive call with 𝑆6.
Since no possible child node of 𝑆6 is found, the algorithm backtracks to 𝑆1 and finds the second possible
child node 𝑆3. The next recursive call with 𝑆3 is also processed since the parent of 𝑆3 is 𝑆1. Finally, the
algorithm terminates until the remaining two child nodes 𝑆4 = {𝑣2, 𝑣3, 𝑣4, 𝑣5} and 𝑆5 = {𝑣3, 𝑣5, 𝑣6} of
𝑆1 are found. It can bee seen that the parent node of 𝑆6 is not 𝑆1, thus 𝑆6 is ignored in the recursive call
with 𝑆1.

Below, we analyze the correctness and complexity of Algorithm 3 in the following theorems.

Theorem 3.3. Algorithm 3 correctly outputs all maximal 𝑠-defective cliques of 𝐺 .

Theorem 3.4. The time complexity of Algorithm 2 is𝑂 (△2𝑠+2
4
𝑠), where △ is the size of the maximum

𝑠-defective clique of 𝐺 .

Theorem 3.5. Algorithm 3 is a polynomial-delay algorithm with 𝑂 (𝑛2 △2𝑠+1
4
𝑠) delay. The space

complexity of Algorithm 3 is 𝑂 (𝑛△).

Discussions. Note that Algorithm 3 cannot be extended to solve problem (2), i.e., enumerating

maximal 𝑠-defective cliques with the size-constraint. This is because the reverse search algorithm

needs to construct a graph-like structure (Definition 2) and make use of their parent relationships

to guide the recursive calls. However, in the developed graph-like structure, there inevitably exist

some maximal 𝑠-defective cliques whose parent is an 𝑠-defective clique with size less than 𝑞. If the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

77:10 Qiangqiang Dai et al.

Result

ID
Vertices

S1 �1 , �2 , �3 , �5

S2 �1 , �2 , �4 , �5

S3 �1 , �2 , �5 , �6

S4 �2 , �3 , �4 , �5

S5 �3 , �5 , �6

S6 �4 , �5 , �6

S
1

S
2

S
3

S
4

S
5

S
6

(a) The graph-like struture

S
1

S
2

S
3

S
4

S
5

S
6

(b) Enumeration tree

Fig. 2. A running example for enumerating all maximal 1-defective cliques using reverse search.

parents with the size less than 𝑞 are ignored in the enumeration procedure, the connectivity of the

graph-like structure will be broken. Therefore, all available results whose parents are ignored will

be missed, which implies that Algorithm 3 cannot be used to solve problem (2). We will present

new techniques to solve problem (2) in Section 4.

Since the notion of 𝑠-defective clique satisfies the hereditary property (Property 1), there are

two reverse search frameworks [15, 16] available for solving our problem (1), i.e., the framework

for enumerating maximal subgraphs satisfying the hereditary property [15] and the framework

for enumerating maximal subgraphs satisfying strongly accessible properties [16]. However, the

framework used in [15] needs to store all maximal results in the main memory to avoid redundant

outputs, thus it usually cannot handle the graphs that have a large number of results. The framework

in [16], also defines a general graph-like structure that is the same as Definition 2 to guide the

recursive processes, which means that our proposed techniques can also be extended to the

framework in [16] to solve the problem of enumerating maximal 𝑠-defective cliques. Since the

graph-like structures are the same, the worst-case delay complexity of this framework is the same

as that of Algorithm 3. As a consequence, it is sufficient to use the basic search framework [2] to

solve our problem.

4 NEW PIVOT-BASED ALGORITHMS
Although the proposed reverse search algorithm has a nice theoretical property, its practical

performance may be not very well, as each maximal 𝑠-defective clique has too many neighbors.

In this section, we propose several branch-and-bound enumeration algorithms based on a novel

pivoting technique. Interestingly, we show that the time complexity of all the proposed pivot-based

enumeration algorithms can be bounded by 𝑂 (𝑛𝛼𝑛𝑠), where 𝛼𝑠 is a real number strictly less than 2.

For instance, if 𝑠 = 0, 𝑠 = 1 and 𝑠 = 2, we have 𝛼0 = 1.618, 𝛼1 = 1.839, and 𝛼2 = 1.928, respectively.

In the rest of this paper, wewill focusmore on problem (2) as defined in Section 2, i.e., enumerating

all 𝑠-defective cliques with size 𝑞 no less than 𝑠 + 2. This is because small 𝑠-defective cliques are

often of no practical use in real-world applications. Moreover, as shown in Section 2, the diameter

of a maximal 𝑠-defective clique with size 𝑞 ≥ 𝑠 + 2 is no larger than 2, thus it is more desirable

to represent a densely-connected community. It is important to note that although we focus on

problem (2), all the proposed branch-and-bound enumeration techniques can also be easily adapted

to enumerate all maximal 𝑠-defective cliques (i.e., for problem (1)). Below, we first present a basic

branch-and-bound enumeration algorithm, which forms a basis for developing our advanced

techniques.

4.1 A Basic Branch-and-Bound Algorithm
Themain idea of the basic branch-and-bound algorithm is that each 𝑠-defective clique either contains

a particular vertex 𝑣 in 𝐺 or does not contain 𝑣 . Thus, given a graph 𝐺 , the original problem can

be divided into two sub-problems. The first sub-problem is to enumerate all maximal 𝑠-defective

cliques containing a vertex 𝑣 in 𝐺 ; and another one is to enumerate all maximal 𝑠-defective cliques

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

Maximal Defective Clique Enumeration 77:11

Algorithm 4: The basic branch-and-bound algorithm.

Input: The graph 𝐺 and two parameters 𝑠 and 𝑞 ≥ 𝑠 + 2.
Output: All relatively-large maximal 𝑠-defective cliques of 𝐺 .

1 𝐵𝑟𝑎𝑛𝑐ℎ𝐸𝑛𝑢𝑚(∅,𝑉 , ∅);
2 Function: 𝐵𝑟𝑎𝑛𝑐ℎ𝐸𝑛𝑢𝑚(𝑆,𝐶,𝑋)
3 if 𝐶 = ∅ then
4 if 𝑋 = ∅ s.t. |𝑆 | ≥ 𝑞 then Output 𝑆 ;

5 return;

6 Select a vertex 𝑣 from 𝐶 , and let 𝑆 ′ ← 𝑆 ∪ {𝑣};
7 𝐶′ ← {𝑢 ∈ 𝐶 \ {𝑣}|𝑆 ′ ∪ {𝑢} is an 𝑠-defective clique};
8 𝑋 ′ ← {𝑢 ∈ 𝑋 |𝑆 ′ ∪ {𝑢} is an 𝑠-defective clique};
9 𝐵𝑟𝑎𝑛𝑐ℎ𝐸𝑛𝑢𝑚(𝑆 ′,𝐶′, 𝑋 ′);

10 𝐵𝑟𝑎𝑛𝑐ℎ𝐸𝑛𝑢𝑚(𝑆,𝐶 \ {𝑣}, 𝑋 ∪ {𝑣});

excluding 𝑣 . Such a method can be recursively applied to enumerate all maximal 𝑠-defective cliques,

and the pseudocode is shown in Algorithm 4.

In Algorithm 4, it invokes the 𝐵𝑟𝑎𝑛𝑐ℎ𝐸𝑛𝑢𝑚 procedure to enumerate all maximal 𝑠-defective

cliques. This procedure admits three parameters: 𝑆 ,𝐶 , and 𝑋 , where 𝑆 is a partial 𝑠-defective clique,

𝐶 is the candidate set in which each vertex is used to expand 𝑆 , and𝑋 is the exclusion set containing

all vertices that have been processed form𝐶 . Initially, the sets 𝑆 and 𝑋 are the empty sets while𝐶 is

set to 𝑉 . Then, in each recursive call, the algorithm first checks if 𝑆 is maximal (lines 3-5). If not, it

selects a vertex 𝑣 from 𝐶 to perform two sub-recursive calls. The first one is the enumeration of all

maximal 𝑠-defective cliques containing 𝑆 ∪ {𝑣} (line 9); and the other one is invoked to enumerate

all maximal 𝑠-defective cliques that contain 𝑆 but not 𝑣 (line 10). Note that before invoking the first

recursive call, the sets 𝐶 and 𝑋 need to be updated to ensure that 𝑆 ∪ {𝑣,𝑢} forms an 𝑠-defective

for each 𝑢 in 𝐶 and 𝑋 (lines 7-8). Whenever the set 𝐶 is empty, the algorithm terminates.

It is easy to verify that Algorithm 4 can correctly enumerate all maximal 𝑠-defective cliques of𝐺 .

The worst-case time complexity of Algorithm 4 is 𝑂 (𝑛△2𝑛), which is analyzed in Theorem 4.1.

Theorem 4.1. Algorithm 4 outputs all maximal 𝑠-defective cliques of 𝐺 in 𝑂 (𝑛△2𝑛) time.

It can be seen that the basic algorithm is very inefficient because there are a large number of

branches that produces non-maximal 𝑠-defective cliques. In the following, we will propose several

efficient techniques to reduce the unnecessary computations.

4.2 A Novel Pivot-based Enumeration Algorithm
To speed up the basic branch and bound algorithm, the key point is to determine the enumeration

branches that definitely produce non-maximal 𝑠-defective cliques. We observe that only the sub-

recursive calls for enumerating all maximal 𝑠-defective cliques that exclude 𝑣 may generate non-

maximal 𝑠-defective cliques. The reason is as follows. Suppose that 𝐶 is the candidate set and a

maximal 𝑠-defective clique 𝐴 ⊆ 𝐶 containing 𝑣 is generated by the first sub-recursive call (i.e.,

the sub-recursion for enumerating all maximal 𝑠-defective cliques containing 𝑣). It is easy to see

that the set 𝐴 \ {𝑣} ⊆ 𝐶 will be included in the candidate set of the second sub-recursive call

(the sub-recursion for enumerating all maximal 𝑠-defective cliques excluding 𝑣). Clearly, a non-

maximal 𝑠-defective clique𝐴 \ {𝑣} will be explored by the second sub-recursive call which results in

unnecessary computations. To optimize the second sub-recursive call, we propose a novel pivoting

technique which is described as follows.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

77:12 Qiangqiang Dai et al.

The pivoting technique. The main idea of this technique is based on the fact that for any maximal

𝑠-defective clique 𝐵 that does not contain 𝑣 , there must be a vertex 𝑢 ∈ 𝐵 such that 𝑢 ∉ 𝐴, where 𝐴

is an arbitrary 𝑠-defective clique containing 𝑣 . Therefore, given a candidate set 𝐶 \ {𝑣} with 𝐴 ⊆ 𝐶 ,
if we select the vertex 𝑢 (𝑢 ∉ 𝐴) to expand the partial 𝑠-defective clique 𝑆 in the sub-recursive call

to enumerate all maximal 𝑠-defective cliques excluding 𝑣 , then all 𝑠-defective cliques contained in

𝐴 \ {𝑣} definitely cannot be generated by such a sub-recursive call. This is because any maximal

𝑠-defective clique generated by the sub-recursive call must contain a vertex 𝑢, and the set 𝐴 \ {𝑣}
does not contain the vertex𝑢. Moreover, we further notice that any vertex in𝐴\{𝑣} is not necessary
to be used to expand 𝑆 (in the sub-recursive call that enumerates all maximal 𝑠-defective cliques

excluding 𝑣). Since for any maximal 𝑠-defective clique in 𝐶 \ {𝑣}, there must be a vertex in 𝐶 \𝐴
that can be used to expand to obtain it. This indicates that all maximal 𝑠-defective cliques that

exclude 𝑣 can be generated by only expanding the vertices in 𝐶 \𝐴. Based on this idea, we develop

a novel pivoting technique for enumerating all maximal 𝑠-defective cliques, which is shown in the

following lemma.

Lemma 1. Given three sets 𝑆 , 𝐶 , and 𝑋 in a recursive call, let 𝑣 be a vertex in 𝐶 with 𝑆 ⊆ 𝑁𝑣 (𝐺). If
the first sub-recursive call is used to enumerate all maximal 𝑠-defective cliques containing 𝑣 , then all
vertices in 𝐶 ∩ 𝑁𝑣 (𝐺) are no need to expand 𝑆 in the other sub-recursive call.

We note that directly applying the pivoting technique in each recursive call may not significantly

improve the efficiency. For example, let us reconsider the graph 𝐺 shown in Fig. 1(a). Let 𝑆 = ∅,
𝐶 = {𝑣1, 𝑣2, ..., 𝑣6}, and 𝑋 = ∅ be the three input sets of the recursive call to enumerate all maximal

1-defective cliques. If we select the vertex 𝑣2 as the pivot vertex, the first sub-recursive call with

𝑆 ′ = {𝑣2} and 𝐶′ = {𝑣1, 𝑣3, ..., 𝑣6} is invoked to enumerate all maximal 1-defective clique containing

𝑣2. Then, based on our pivoting technique (Lemma 1), the second sub-recursive call with 𝑆 = ∅
and 𝐶 = {𝑣1, 𝑣3, ..., 𝑣6} only selects 𝑣6 ∈ 𝐶 \ 𝑁𝑣2 (𝐺) = {𝑣6} as the pivot vertex and then enumerates

all maximal 1-defective cliques containing 𝑣6. We observe that all maximal 1-defective cliques

have been generated so far. However, if we further perform the pivoting technique, the vertices in

𝐶 \ 𝑁𝑣6 (𝐺) = {𝑣3, 𝑣4} will be used to expand 𝑆 = ∅ in the sub-recursive call that is invoked with

𝑆 = ∅ and𝐶 = {𝑣1, 𝑣3, 𝑣4, 𝑣5} to enumerate the maximal 1-defective cliques, which incurs redundant

computations.

Pivot-based branching rule. Interestingly, we find that only a part of recursive calls in the

branch-and-bound algorithm is required to perform the pivoting technique. Let the top recursive

call be the root branch. For each recursive call, we refer to the sub-recursive call that enumerates

maximal 𝑠-defective cliques containing a particular vertex in the candidate set as the first-child,

and the other sub-recursive call as the second-child. Then, we propose the following pivot-based
branching rule: in the branch-and-bound algorithm, only the root branch and the first-child of

each recursive call require to perform the pivoting technique, while for the second-child of each

recursive call, we inherit the pivoting results (i.e., the candidate vertices that can be used to expand)

from its parent branch to continue the computation.

The pivot-based branching algorithm. With the proposed pivot-based branching rule, we then

develop a novel pivot-based branch-and-bound algorithm. Unlike the basic branch-and-bound

algorithm, we need to partition the candidate set into two disjoint sets 𝐶1 and 𝐶2. The benefits of

doing this are that (i) when performing the pivot-based technique in a recursion, 𝐶1 and 𝐶2 are the

candidate sets that need and do not need to be used to expand 𝑆 , respectively; (ii) it can also be

used to distinguish whether the current recursion is the first or second-child branch, i.e., if 𝐶2 is

not empty, it must be the second-child branch. The detailed pseudocode is shown in Algorithm 5.

In Algorithm 5, it invokes the 𝑃𝑖𝑣𝑜𝑡𝐸𝑛𝑢𝑚 procedure to perform recursive calls, which requires

five parameters: 𝑆 , 𝑟 , 𝐶1, 𝐶2, and 𝑋 , where the parameters 𝐶1 and 𝐶2 are the two disjoint candidate

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

Maximal Defective Clique Enumeration 77:13

Algorithm 5: The pivot-based branch-and-bound algorithm.

Input: The graph 𝐺 and two parameters 𝑠 and 𝑞 ≥ 𝑠 + 2.
Output: All relatively-large maximal 𝑠-defective cliques of 𝐺 .

1 𝑃𝑖𝑣𝑜𝑡𝐸𝑛𝑢𝑚(∅, 0, {(𝑣, 0) |𝑣 ∈ 𝑉 }, ∅, ∅);
2 Function: 𝑃𝑖𝑣𝑜𝑡𝐸𝑛𝑢𝑚(𝑆, 𝑟,𝐶1,𝐶2, 𝑋)
3 if 𝐶1 = ∅ then
4 if 𝐶2 ∪ 𝑋 = ∅ and |𝑆 | ≥ 𝑞 then Output 𝑆 ;

5 return;

6 Select a pivot element (𝑣, 𝑐𝑣) from 𝐶1 such that 𝑐𝑣 is maximum among all elements in 𝐶1;

7 if 𝑐𝑣 = 0 and 𝐶2 = ∅ then
8 𝐶2 ← {(𝑢, 𝑐𝑢) ∈ 𝐶1 |𝑢 ∈ 𝑁𝑣 (𝐺)};
9 𝐶1 ← {(𝑢, 𝑐𝑢) ∈ 𝐶1 |𝑢 ∉ 𝑁𝑣 (𝐺)};

10 𝐶′
1
← 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑡 (𝑆 ∪ {𝑣}, 𝑟 + 𝑐𝑣, 𝑣,𝐶1 ∪𝐶2);

11 𝑋 ′ ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑡 (𝑆 ∪ {𝑣}, 𝑟 + 𝑐𝑣, 𝑣, 𝑋);
12 𝑃𝑖𝑣𝑜𝑡𝐸𝑛𝑢𝑚(𝑆 ∪ {𝑣}, 𝑟 + 𝑣𝑐 ,𝐶′

1
, ∅, 𝑋 ′);

13 𝑃𝑖𝑣𝑜𝑡𝐸𝑛𝑢𝑚(𝑆, 𝑟,𝐶1 \ {(𝑣, 𝑐𝑣)},𝐶2, 𝑋 ∪ {(𝑣, 𝑐𝑣)});
14 Function:𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑡 (𝑆, 𝑟, 𝑣,𝐶)
15 𝐶′ ← ∅;
16 foreach (𝑢, 𝑐𝑢) ∈ 𝐶 do
17 if 𝑢 ∉ 𝑁𝑣 (𝐺) then 𝑐𝑢 ← 𝑐𝑢 + 1;
18 if 𝑣 ≠ 𝑢 and 𝑟 + 𝑐𝑢 ≤ 𝑠 then
19 𝐶′ ← 𝐶′ ∪ {(𝑢, 𝑐𝑢)};

20 return 𝐶′;

sets respectively, and 𝑟 is a parameter to record the number of missing edges in 𝐺 (𝑆). Initially,
the sets 𝑆 , 𝐶2, and 𝑋 are set to empty, while 𝐶1 contains all vertices in 𝑉 (line 1). Note that each

element of the three sets 𝐶1, 𝐶2, and 𝑋 is a pair (𝑣, 𝑐𝑣), where 𝑣 is the vertex and 𝑐𝑣 is the number

of non-neighbors of 𝑣 in 𝑆 . Here the purpose of using such a pair representation is to improve the

efficiency for updating the sets 𝐶1, 𝐶2, and 𝑋 . Specifically, when a vertex 𝑣 is added to 𝑆 , for each

(𝑢, 𝑐𝑢) in𝐶1,𝐶2, and 𝑋 , we can determine whether 𝑢 can form an 𝑠-defective clique with 𝑆 ∪ {𝑣} by
simply checking whether 𝑢 and 𝑣 are adjacent, since 𝑐𝑢 has recorded the number of non-neighbors

of 𝑢 in 𝑆 . Thus, the overall updating time is linear by using this trick, which is detailed in the

procedure𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑡 (lines 14-20).

In each recursive call, if𝐶1∪𝐶2∪𝑋 is empty, the algorithm outputs 𝑆 as a result (line 4). Otherwise,

the algorithm recursively performs the branch-and-bound procedure if 𝐶1 ≠ ∅ (lines 6-13). More

specifically, it first picks a pivot element (𝑣, 𝑐𝑣) in𝐶1, where 𝑐𝑣 is maximum among all elements in𝐶1

(line 6). If such a pivot vertex 𝑣 satisfies 𝑆 ⊆ 𝑁𝑣 (𝐺) and also𝐶2 = ∅ (lines 7), the algorithmmakes use

of Lemma 1 to partition the original𝐶1 into two new candidate sets𝐶1 and𝐶2 such that all vertices

in 𝐶1 are the neighbors of 𝑣 and 𝐶2 does not contain any neighbors of 𝑣 (lines 8-9). Otherwise, the

original sets 𝐶1 and 𝐶2 are directly used. The algorithm then obtains the sets 𝐶′
1
⊂ (𝐶1 ∪𝐶2) and

𝑋 ′ ⊆ 𝑋 by invoking the 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑡 procedure, and invokes the first sub-recursive call to expand

𝑆 with 𝑣 (lines 10-12). Note that in this sub-recursive call, all candidate vertices are included in

𝐶′
1
, while 𝐶′

2
is empty. This is because only the second sub-recursive call may produce redundant

computations. After that, the algorithm moves the pivot vertex (𝑣, 𝑐𝑣) from 𝐶1 to 𝑋 and makes use

of the second sub-recursive call to continue the recursions until the set 𝐶1 is empty (line 3 and

line 13). Below, we give an example to illustrate the basic idea of this algorithm.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

77:14 Qiangqiang Dai et al.

{v5}; {v1 v2 v3 v4 v6};
Ø; Ø

Ø; {v1 v2 v3 v4 v5 v6}; Ø; Ø

Ø; Ø;
{v1 v2 v3 v4 v6}; {v5}

{v5 v2}; {v1 v3 v4 v6};
Ø; Ø

{v5 v2 v6}; {v1};
Ø; Ø

{v5 v2 v6 v1}; Ø;
Ø; Ø

{v5 v2}; {v1 v3 v4};
Ø; {v6}

{v5 v2 v3}; {v1 v4};
Ø; Ø

{v5 v2}; {v1} ;
{v4}; {v6 v3}

{v5 v2 v3 v1}; Ø;
Ø; Ø

{v5 v2 v3}; {v4};
Ø; {v1}

{v5 v2 v3 v4}; Ø
Ø; Ø

{v5}; {v6};
{v1 v3 v4}; {v2}

{v5 v6}; {v1 v3 v4};
Ø; {v2}

{v5}; Ø;
v1 v3 v4 ; {v2 v6}

{v5 v2 v1}; {v4}
Ø; {v6 v3}

{v5 v2}; Ø;
{v4}; {v6 v3 v1}

{v5 v2 v1 v4}; Ø
Ø; Ø

{v5 v6 v3}; Ø;
Ø; Ø

{v5 v6}; {v1 v4};
Ø; {v2 v3}

{v5 v6 v4}; Ø;
Ø; Ø

{v5 v6}; {v1};
Ø; {v2 v3 v4}

{v5 v6 v1}; Ø;
Ø; {v2}

Fig. 3. The enumeration tree of our pivot-based enumeration algorithm with 𝑠 = 1 (The sets used in each
recursive call correspond to the partial 1-defective clique 𝑆 , candidate set 𝐶1, candidate set 𝐶2, and exclusion
set 𝑋 from left to right).

Example 3. Given a graph 𝐺 shown in Fig. 1(a) and a parameter 𝑠 = 1. Algorithm 5 first initializes
the sets 𝑆 , 𝐶2, and 𝑋 to empty, and the set 𝐶1 to 𝑉 . In the root branch, we assume that 𝑣5 is the
pivot vertex. The algorithm then divides the candidate set into 𝐶1 = ∅ and 𝐶2 = {𝑣1, ..., 𝑣4, 𝑣6}, since
all vertices in 𝑉 \ {𝑣5} are the neighbors of 𝑣5. Thus, the second-child with 𝑆 = ∅, 𝐶1 = ∅, and
𝐶2 = {𝑣1, ..., 𝑣4, 𝑣6} will terminate immediately because 𝐶1 = ∅. For the first-child with 𝑆 = {𝑣5} and
𝐶1 = {𝑣1, ..., 𝑣4, 𝑣6}, another pivot vertex 𝑣2 is further selected, which leads to that its candidate sets can
be partitioned as𝐶1 = {𝑣6} and𝐶2 = {𝑣1, 𝑣3, 𝑣4, 𝑣5}. Subsequently, this recursion further generates two
sub-recursive calls to continue the branch-and-bound procedure. For a new second-child, it can only
expand 𝑆 = {𝑣5} with 𝑣6, since 𝐶1 contains only 𝑣6. Such a second-child is finished until all maximal
𝑠-defective cliques containing {𝑣5, 𝑣6} are obtained, and the whole algorithm terminates when all
vertices in𝐶1 for each recursion are computed. The complete enumeration tree of Algorithm 5 is shown
in Fig. 3.

We analyze the correctness and complexity of Algorithm 5 in the following theorems.

Theorem 4.2. Algorithm 5 outputs all maximal 𝑠-defective cliques of 𝐺 exactly once and no non-
maximal 𝑠-defective clique is output.

Proof sketch. By Lemma 1, we can derive that all maximal 𝑠-defective cliques are output by

Algorithm 5. Then, when all maximal 𝑠-defective cliques containing 𝑣 ∈ 𝐶1 are identified, 𝑣 needs to

be moved to 𝑋 , thus we can avoid non-maximal and redundant results. This is because the current

𝑆 is a possible result only if 𝑋 = ∅. □

Theorem 4.3. Given a graph 𝐺 with 𝑛 vertices, the time complexity of Algorithm 5 is bounded by
𝑂 (𝑛𝛼𝑛𝑠), where 𝛼𝑠 is the largest real root of function 𝑥𝑠+3 − 2𝑥𝑠+2 + 1 = 0 and it is strictly smaller than
2. In particular, when 𝑠 = 0, 1, and 2, we have 𝛼𝑠 = 1.618, 1.839, and 1.928, respectively.

Proof sketch. Denote by 𝑇 (𝑛) the total number of recursive calls. By Lemma 1, we can divide

the set 𝐶 = 𝐶1 ∪𝐶2 into 𝐶1 = 𝐶 \ 𝑁𝑣 (𝐺) and 𝐶2 = 𝐶 ∩ 𝑁𝑣 (𝐺) when the vertex 𝑣 ∈ 𝐶 is the pivot.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

Maximal Defective Clique Enumeration 77:15

If |𝐶1 | ≤ 𝑠 , we can obtain a recurrence of 𝑇 (𝑛) ≤ ∑𝑠+1
𝑖=1 𝑇 (𝑛 − 𝑖). Otherwise, 𝑇 (𝑛) ≤

∑𝑠+2
𝑖=1 𝑇 (𝑛 − 𝑖)

is obtained, since the current 𝑆 admits at most 𝑠 missing edges. When the vertex 𝑣 ∈ 𝐶 is not

the pivot vertex, we have 𝑆 \ 𝑁𝑣 (𝐺) ≠ ∅, which also can derive that 𝑇 (𝑛) ≤ ∑𝑠+2
𝑖=1 𝑇 (𝑛 − 𝑖) based

on a restriction that there are at most 𝑠 missing edges in 𝑆 . Thus, the worst-case recurrence is

𝑇 (𝑛) ≤ ∑𝑠+2
𝑖=1 𝑇 (𝑛 − 𝑖). By the result in [22], we can derive the results as shown in the theorem. □

Theorem 4.4. The space complexity of Algorithm 5 is 𝑂 (𝑛△), where △ is the size of the maximum
𝑠-defective clique of 𝐺 .

Remark. Note that based on Lemma 1, only the vertex 𝑣 ∈ 𝐶1 satisfying 𝑆 ⊆ 𝑁𝑣 (𝐺) is considered
as the pivot vertex. If the conditions in line 7 of Algorithm 5 hold in a recursive call, then every

vertex 𝑣 in 𝐶1 satisfies 𝑆 ⊆ 𝑁𝑣 (𝐺) and can be used as a pivot vertex. To achieve good efficiency, we

can re-select a vertex that has the most number of neighbors in the candidate set 𝐶1 as the pivot

vertex.

Discussions. Note that the pivot-based enumeration techniques used in Algorithm 5 are different

from the approaches for enumerating cliques, 𝑘-plexes, and the maximum 𝑠-defective cliques.

As we analyzed before, existing clique enumeration techniques [10, 21, 38, 47] and 𝑘-plex enu-

meration techniques [49, 54] cannot be used to solve our problem. Thus, in this paper, we present a

new pivoting technique (Lemma 1). In the recursive enumeration procedure, we also develop a new

binary branch-and-bound framework, which is different from the existing methods based on the

set enumeration framework [10, 21, 38, 47].

Although the algorithm for enumerating all 𝑘-plexes in [54] achieves a similar time complexity

to ours (Algorithm 5), the techniques used are fundamentally different. In this paper, we present

a new pivoting technique to partition the candidate set into two disjoint subsets 𝐶1 and 𝐶2, and

only select the vertices in 𝐶1 to expand 𝑆 . By Theorem 4.3, our approach can achieve a recurrence

of 𝑇 (𝑛) ≤ ∑𝑠+2
𝑖=1 𝑇 (𝑛 − 𝑖). However, for maximal 𝑘-plex enumeration, [54] picks the vertex 𝑣 ∈ 𝐶

with the smallest degree in 𝐺 (𝑆 ∪ 𝐶) to generate sub-branches, thus obtaining a recurrence of

𝑇 (𝑛) ≤ ∑𝑘+1
𝑖=1 𝑇 (𝑛 − 𝑖) as shown in [54]. Since 𝑘 ≥ 1 and 𝑠 ≥ 0, the branching factor for these two

approaches happens to be the same. Moreover, if using an adaptation of the method in [54] to solve

our problem, the worst-case time complexity of this adapted approach cannot reach our bound.

This is because the recursive call cannot terminate if the smallest degree in𝐺 (𝑆 ∪𝐶) is no less than
|𝑆 ∪𝐶 | − 1 − 𝑠 .
In addition, we also note that the algorithm proposed in [13] for finding the maximum 𝑠-defective

clique is closely related to the techniques in [54], thus it is also different from ours. Specifically, in

each recursion, [13] first determines whether |𝐶 \ 𝑁𝑆 (𝐺) | > 𝑠 holds, where 𝑁𝑆 (𝐺) is the common

neighbors of vertices in 𝑆 , i.e., 𝑁𝑆 (𝐺) = {𝑢 ∈ 𝐶 |𝑆 ⊆ 𝑁𝑢 (𝐺)}. If |𝐶 \ 𝑁𝑆 (𝐺) | > 𝑠 , the algorithm uses

the branching rule in [54] for enumeration. Otherwise, the algorithm makes use of the basic binary

branching rule for enumeration (similar to Algorithm 4). As shown in [13], the time complexity of

this approach is much worse than ours. Thus, using the technique in [13] to solve our problem

cannot achieve good performance, which is also confirmed in our experiments.

4.3 Optimization Techniques
In this subsection, we propose several optimization techniques to further improve the efficiency of

the proposed pivot-based algorithm. The first optimization is a degeneracy ordering for enumerating

all maximal 𝑠-defective cliques. With the help of this technique, the time complexity of the proposed

pivot-based algorithm can be further improved to 𝑂 (𝑛𝑠+2𝛼𝛿𝑠). Here 𝛿 is the degeneracy of a given

graph 𝐺 [32], which is often very small in real-world graphs [21, 31]. The other optimizations are

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

77:16 Qiangqiang Dai et al.

Algorithm 6: The improved pivot-based algorithm.

Input: The graph 𝐺 and two parameters 𝑠 and 𝑞 ≥ 𝑠 + 2.
Output: All relatively-large maximal 𝑠-defective cliques of 𝐺 .

1 Let 𝑣1, 𝑣2, ..., 𝑣𝑛 be the degeneracy ordering of vertices in 𝑉 ;

2 for 𝑖 = 1 to 𝑛 do
3 𝐶 ← 𝑉>𝑣𝑖 ∩ 𝑁𝑣𝑖 (𝐺); 𝐶 ← 𝑉>𝑣𝑖 \ 𝑁𝑣𝑖 (𝐺); 𝑋 ← 𝑉<𝑣𝑖 ;

4 foreach 𝐼 ⊆ 𝐶 s.t. |𝐼 | ≤ 𝑠 do
5 𝐼 ← 𝐼 ∪ {𝑣𝑖 }; 𝑠′ ← the number of missing edges in 𝐺 (𝐼);
6 if 𝑠′ ≤ 𝑠 then
7 Obtain 𝐶′ ⊆ {(𝑢, 𝑐𝑢) |𝑢 ∈ 𝐶} and 𝑋 ′ ⊆ {(𝑢, 𝑐𝑢) |𝑢 ∈ 𝐶 ∪ 𝑋 \ 𝐼 } such that for each

(𝑢, 𝑐𝑢) ∈ 𝐶′ ∪ 𝑋 ′, 𝑐𝑢 = |𝐼 \ 𝑁𝑢 (𝐺) | and 𝑠′ + 𝑐𝑢 ≤ 𝑠;
8 𝑃𝑖𝑣𝑜𝑡𝐸𝑛𝑢𝑚(𝐼 , 𝑠′,𝐶′, ∅, 𝑋 ′);

aimed to reduce the size of the candidate set in enumerating all relatively-large maximal 𝑠-defective

cliques. Below, we first introduce the concept of the degeneracy ordering.

Definition 6 (Degeneracy ordering). Given a graph 𝐺 , the degeneracy ordering of vertices in 𝑉 is an
ordering of 𝑣1, 𝑣2, ..., 𝑣𝑛 such that for each 𝑣𝑖 , its degree is minimum in 𝐺 ({𝑣𝑖 , ..., 𝑣𝑛}).

To obtain the degeneracy ordering of the vertices in a graph 𝐺 , we can use a peeling technique

to iteratively remove the lowest-degree vertex from 𝐺 [4]. Such a vertex-removal ordering is the

degeneracy ordering, which can be computed in 𝑂 (𝑚 + 𝑛) time [4].

The key idea of our improved pivot-based algorithm is based on an observation that given a

vertex 𝑣 ∈ 𝑉 , each maximal 𝑠-defective clique including 𝑣 contains at most 𝑠 non-neighbors of 𝑣 .

This indicates that to obtain all maximal 𝑠-defective cliques including 𝑣 , it only needs to enumerate

all maximal 𝑠-defective cliques containing 𝐼 ∪ {𝑣}, for each 𝐼 satisfying |𝐼 | ≤ 𝑠 and 𝐼 ⊆ 𝑁 𝑣 (𝐺).
Here the candidate set of 𝐼 ∪ {𝑣} must be a subset included in 𝑁𝑣 (𝐺). Thus, we obtain an improved

algorithm which is shown in Algorithm 6.

In Algorithm 6, it first computes the degeneracy ordering of the vertices in 𝑉 (line 1). Then, for

each vertex 𝑣𝑖 in 𝑉 , it computes all maximal 𝑠-defective cliques containing 𝑣𝑖 (lines 2-8). Before

performing recursive calls, the algorithm partitions the task into several sub-tasks based on our

previous observation (lines 4-7). In particular, the algorithm first divides the candidate set into two

disjoint sets𝐶 and𝐶 , where𝐶 (𝐶) includes all neighbors (non-neighbors) of 𝑣𝑖 that occur after 𝑣𝑖 in

the degeneracy ordering (line 3). In line 3, the set 𝑉>𝑣𝑖 is defined as {𝑣 𝑗 ∈ 𝑉 | 𝑗 > 𝑖}. Next, it selects
each subset 𝐼 of 𝐶 with |𝐼 | ≤ 𝑠 and enumerates all maximal 𝑠-defective cliques that contain 𝐼 ∪ {𝑣𝑖 }
(lines 4-8). Note that the candidate set of the recursion with 𝐼 ∪ {𝑣𝑖 } only contains the neighbors of

𝑣𝑖 , since for any maximal 𝑠-defective clique 𝑆 containing 𝑣𝑖 , there always exists a recursion with

𝐼 ∪ {𝑣𝑖 } satisfying 𝐼 ⊂ 𝐶 and 𝐼 = 𝑆 \ 𝑁𝑣𝑖 (𝐺). Finally, the algorithm terminates when all vertices in

𝑉 have been processed.

Theorem 4.5. The time and space complexity of Algorithm 6 are 𝑂 (𝑛𝑠+2𝛼𝛿𝑠) and 𝑂 (𝑛 ∗𝑚𝑖𝑛(△, 𝛿)),
respectively, where 𝛼𝑠 is the largest real root of 𝑥𝑠+3 − 2𝑥𝑠+2 + 1 = 0 which is strictly smaller than 2,
and 𝛿 is the degeneracy of the graph 𝐺 .

Optimization techniques for problem (2). Here we further propose several additional opti-
mization techniques for enumerating all maximal 𝑠-defective cliques with size no less than 𝑞

(𝑞 ≥ 𝑠 + 2).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

Maximal Defective Clique Enumeration 77:17

Algorithm 7: The general pivot-based algorithm.

Input: A graph 𝐺 .

Output: All maximal P-subgraphs of 𝐺 .
1 𝐺𝑒𝑛𝐸𝑛𝑢𝑚(∅,𝑉 , ∅, ∅);
2 Function: 𝐺𝑒𝑛𝐸𝑛𝑢𝑚(𝑆,𝐶1,𝐶2, 𝑋)
3 if 𝐶1 = ∅ then
4 if 𝐶2 ∪ 𝑋 = ∅ then Output 𝑆 ;

5 return;

6 Select a pivot vertex 𝑣 from 𝐶1; 𝐶 ← 𝐶1 ∪𝐶2 \ {𝑣};
7 Obtain the sets 𝐶′ ⊆ 𝐶 and 𝑋 ′ ⊆ 𝑋 such that for each 𝑢 ∈ 𝐶′ ∪ 𝑋 ′, 𝑆 ∪ {𝑣,𝑢} is a P-subgraph;
8 𝐺𝑒𝑛𝐸𝑛𝑢𝑚(𝑆 ∪ {𝑣},𝐶′, ∅, 𝑋 ′);
9 if 𝐶2 = ∅ then
10 Partition 𝐶 into two disjoint subsets 𝐶′

1
and 𝐶′

2
such that all vertices in 𝐶′

2
are ignored when

expanding 𝑆 ; 𝐶1 ← 𝐶′
1
, 𝐶2 ← 𝐶′

2
;

11 𝐺𝑒𝑛𝐸𝑛𝑢𝑚(𝑆,𝐶1 \ {𝑣},𝐶2, 𝑋 ∪ {𝑣});

Lemma 2. Given any 𝑠-defective clique 𝑆 with the size of 𝑞 (𝑞 = |𝑆 |), for each pair of vertices 𝑢 and 𝑣
in 𝑆 , we have |𝑁𝑣 (𝑆) ∩ 𝑁𝑢 (𝑆) | ≥ 𝑞 − 𝑠 − 2 if (𝑢, 𝑣) ∈ 𝐸 and |𝑁𝑣 (𝑆) ∩ 𝑁𝑢 (𝑆) | ≥ 𝑞 − 𝑠 − 1 if (𝑢, 𝑣) ∉ 𝐸.

Before performing the recursive procedure to enumerate the maximal 𝑠-defective cliques with

size no less than 𝑞 (𝑞 ≥ 𝑠 + 2), we can make use of Lemma 2 to remove unnecessary vertices in the

candidate set. The details are as follows. Let𝐶 be the candidate set and 𝑆 = {𝑣} be the partial result,
we first partition the set𝐶 into two subsets𝐶1 and𝐶2 such that𝐶1 = 𝐶 ∩𝑁𝑣 (𝐺) and𝐶2 = 𝐶 \𝑁𝑣 (𝐺).
Then, we iteratively remove the vertices in 𝐶1 whose degree in 𝐺 (𝐶1) is less than 𝑞 − 𝑠 − 2. Let
𝐶′
1
⊆ 𝐶1 be the remaining vertices satisfying 𝑑𝑢 (𝐶′1) ≥ 𝑞 − 𝑠 − 2 for each 𝑢 in 𝐶′

1
. We next remove

each vertex 𝑢 in 𝐶2 that satisfies |𝑁𝑢 (𝐺) ∩𝐶′1 | < 𝑞 − 𝑠 − 1. After that, all the remaining vertices

form the new candidate set of a recursive call. Clearly, such a pruning process can be done in linear

time with respect to the number of edges in 𝐺 (𝐶).
Interestingly, we can derive a more general result based on Lemma 2 as shown in the following

lemma.

Lemma 3. Given any 𝑠-defective clique 𝑆 with the size of 𝑞 (𝑞 = |𝑆 |), for each subset 𝑅 ⊆ 𝑆 , we refer
to 𝑁𝑅 (𝑆) as the number of common neighbors of 𝑅 in 𝑆 , then we have |𝑁𝑅 (𝑆) | ≥ 𝑞 − |𝑅 | − 𝑠 + 𝑟 , where
𝑟 is the number of missing edges in 𝐺 (𝑅).

Based on Lemma 3, an early termination criteria can be further used in each recursive call of

our pivot-based algorithm. Specifically, in each recursive call, there always exists a vertex 𝑣 in

the candidate set 𝐶1 selected to expand the partial 𝑠-defective clique 𝑆 . Before expanding 𝑆 with

𝑣 , we first compute the common neighbors of 𝑆 ∪ {𝑣} in the candidate set. Then, we make use of

Lemma 3 to determine whether the sub-recursive call with 𝑆 ∪ {𝑣} needs to be computed. If not, we

can early terminate the computation. Note that in Algorithm 5 and Algorithm 6, we have already

known the common neighbors of 𝑆 ∪ {𝑣} using the𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑡 procedure. Therefore, such an early

termination trick can be implemented in constant time in each recursive call.

5 A GENERAL PIVOTING PARADIGM
In this section, we generalize our pivot-based algorithm to enumerate all maximal subgraphs that

satisfy the hereditary property. Given a graph property P, we call the graph property P to be

hereditary on the subgraph 𝐺 (𝑆) if both 𝐺 (𝑆) and all subgraphs of 𝐺 (𝑆) satisfy property P. For

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

77:18 Qiangqiang Dai et al.

convenience, we refer to a subgraph as a P-subgraph if it satisfies the hereditary property P.
Clearly, the basic branch-and-bound algorithm can enumerate all maximal P-subgraphs of𝐺 . Such
an algorithm, however, is inefficient because its worst-case time complexity is 𝑂 (𝑓 (𝑛)2𝑛), where
𝑓 (𝑛) is a polynomial function with respect to (w.r.t.) 𝑛. To improve the efficiency, we present a

general pivot-based branch-and-bound algorithm which is shown in Algorithm 7.

Similar to our pivot-based algorithm for enumerating all maximal 𝑠-defective cliques, Algorithm 7

also needs two disjoint candidate sets𝐶1 and𝐶2, and it only expands the partial P-subgraph 𝑆 using
the vertices in 𝐶1 (line 1 and line 6). Specifically, in each recursion, the algorithm selects a pivot

𝑣 from 𝐶1 to expand 𝑆 , and then recursively enumerates all maximal P-subgraphs that contains
𝑣 (lines 7-8). To enumerate all the maximal P-subgraphs excluding 𝑣 , the algorithm first checks

whether 𝐶2 = ∅. If so, the algorithm partitions the current candidate set 𝐶 = 𝐶1 ∪ 𝐶2 \ {𝑣} into
two new candidate sets 𝐶′

1
and 𝐶′

2
such that each vertex in 𝐶′

2
is no need to expand 𝑆 (lines 9-10).

After that, the algorithm invokes the recursive procedure to enumerate all maximal P-subgraphs
excluding 𝑣 (line 11).

The remaining technical issue needed to be addressed in Algorithm 7 is how to partition the

candidate set𝐶 into two disjoint subsets𝐶′
1
and𝐶′

2
in line 10. Below, we propose a general partition

approach to solve this issue.

Lemma 4. In each recursion, we let 𝑆 be the partial P-subgraph and𝐶 be the candidate set. Suppose
that 𝐴 is an arbitrary maximal P-subgraph containing 𝑆 ∪ {𝑣} that has already been identified by
the algorithm, where 𝐴 ⊆ 𝐶 ∪ 𝑆 ∪ {𝑣}. Then, based on 𝐴, we can obtain a valid partition such that
𝐶2 = 𝐴 \ (𝑆 ∪ {𝑣}) and 𝐶1 = 𝐶 \𝐶2.

By Lemma 4, it is easy to construct a partition if we have a maximal P-subgraph containing

𝑆 ∪ {𝑣}. So, the question is how to obtain such a subgraph in each recursion? In effect, Algorithm 7

can obtain such a subgraph for free. That is, the results returned by the recursive call in line 8 are

exactly the maximal P-subgraphs that contain 𝑆 ∪ {𝑣}. More interestingly, we prove that the time

complexity of such a general pivot-based algorithm can be bounded by 𝑂 (𝑓 (𝑛)𝛼𝑛), where 𝛼 is a

real number no larger than 2.

Theorem 5.1. Let 𝑝 be the maximum size of𝐶1 in line 11 of Algorithm 7. Then, the time complexity
of Algorithm 7 is bounded by 𝑂 (𝑓 (𝑛)𝛼𝑛), where 𝑓 (𝑛) is a polynomial function w.r.t. 𝑛, and 𝛼 is the
maximum real root of 𝑥𝑝+2 − 2𝑥𝑝+1 + 1 = 0, which is no larger than 2.

6 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the efficiency and effectiveness of the

proposed algorithms. Below, we first describe the experimental setup and then report our results.

6.1 Experimental Setup

Algorithms. We implement five algorithms, denoted by RSA, Basic, MDEC, Pivot, and Pivot+, to
enumerate all maximal 𝑠-defective cliques, where RSA is the polynomial-delay algorithm shown

in Algorithm 3, Basic is the basic branch-and-bound algorithm presented in Algorithm 4,MDEC
is an adaptation of the maximum 𝑠-defective clique detection algorithm in [13] by removing all

maximum 𝑠-defective clique pruning rules and remaining the branching technique, Pivot is the
proposed pivot-based branch-and-bound algorithm presented in Algorithm 5, and Pivot+ is the
improved Pivot algorithm shown in Algorithm 6. Here Basic and MDEC are used as baselines for

comparison.

To enumerating relatively-large maximal 𝑠-defective cliques (with size no less than a given

threshold 𝑞), we also implement two additional algorithms, called Pivot2 and Pivot2+. Pivot2 is a
variant of Pivot which initializes the candidate set with 2-hop neighbors of a vertex 𝑣 to enumerate

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

Maximal Defective Clique Enumeration 77:19

Table 1. Real-world graph datasets.

Datasets 𝑛 𝑚 𝑑max 𝛿

scc-enron 146 9,828 145 119

scc-rt-lolgop 273 4,510 249 41

web-google 1,299 2,773 59 17

web-edu 3,031 6,474 104 29

ca-GrQc 4,158 13,422 81 43

web-spam 4,767 37,375 477 35

dblp-2010 226,413 1,432,920 238 74

ca-citeseer 227,320 1,628,268 1,372 86

wikipedia2009 1,864,433 9,014,630 2,624 66

flixster 2,523,386 15,837,602 1,474 68

socfb-B-anon 2,937,612 41,919,708 4,356 63

Table 2. Running time of various algorithms on small real-world graphs (in seconds).
Datasets 𝑠 #Nums RSA Basic MDEC Pivot Pivot+ 𝑠 #Nums RSA Basic MDEC Pivot Pivot+

scc-enron
1 7.97×102 0.08 INF INF 0.01 0.47 3 6.14×105 58.92 INF INF 0.22 98.71

2 2.36×104 2.09 INF INF 0.04 7.52 4 1.46×107 1604.38 INF INF 2.18 1062.73

scc-rt-lolgop
1 3.27×104 1.19 INF INF 0.01 0.08 3 1.06×107 513.2 INF INF 1.32 12.84

2 6.77×105 25.98 INF INF 0.08 1.19 4 9.29×107 4580.25 INF INF 10.09 98.33

web-google
1 8.41×105 77.24 3.49 3.11 0.69 0.37 3 3.68×108 INF 2777.89 1350.03 305.72 96.33
2 3.56×106 266.03 10.57 7.51 2.84 1.72 4 3.84×108 INF 3772.05 1392.68 340.16 411.99

web-edu
1 4.59×106 1101.43 178.63 423.71 9.00 3.25 3 4.65×109 INF 67828.74 41373.21 9404.94 2397.92
2 1.94×107 3079.57 241.86 436.84 36.63 19.42 4 4.78×109 INF INF 41860.55 9445.79 11414.93

ca-GrQc
1 8.63×106 2832.71 INF INF 23.53 7.86 3 1.21×1010 INF INF INF 33316.87 8452.04
2 5.55×107 35055.38 INF INF 96.18 50.52 4 1.35×1010 INF INF INF 33560.66 40650.56

web-spam
1 1.26×107 5164.93 98.96 248.15 35.16 13.55 3 1.86×1010 INF INF INF 57014.37 15403.21
2 1.84×108 INF 557.83 812.66 165.25 108.17 4 2.71×1010 INF INF INF 62245.90 75138.01

maximal 𝑠-defective cliques containing 𝑣 . Pivot2+ is an improved Pivot2 algorithm equipped with

the optimization techniques shown in Lemma 2 and Lemma 3. Note that both Pivot2 and Pivot2+
are equipped with the degeneracy ordering technique. All algorithms are implemented in C++, and

tested on a PC with one 2.2 GHz CPU and 128GB of RAM running CentOS.

Datasets.We use 11 real-world networks to test the performance of proposed algorithms, including

collaboration networks, web graphs, social networks, scientific computing networks, and so on. The

detailed statistics of these datasets are shown in Table 1, where 𝑑𝑚𝑎𝑥 and 𝛿 denote the maximum

degree and the degeneracy of the graph respectively. Note that in the experiments, we use 6

small real-world graphs (the first six datasets in Table 1) to evaluate the performance of different

algorithms for enumerating all maximal 𝑠-defective cliques, because both RSA and Basic are often
too expensive to enumerate all results on large graphs. We use 5 large graphs (the last five datasets

in Table 1) to evaluate the performance of different algorithms for enumerating relatively-large

maximal 𝑠-defective cliques. All datasets can be downloaded from https://networkrepository.com/

index.php.

Parameters. For all algorithms, we set the parameter 𝑠 to be an integer falling in the interval [1, 4]
with a default value of 2. To enumerate relatively-large maximal 𝑠-defective cliques, we set the

threshold parameter 𝑞 to be an integer falling in the interval [8, 20] with a default value of 12. We

will study the effect of our algorithms with varying these two parameters.

6.2 Efficiency Testing

Exp-1: Results of enumerating allmaximal 𝑠-defective cliques. In this experiment, we evaluate

the performance of various algorithms to enumerate all maximal 𝑠-defective cliques. Table 2 shows

the runtime of RSA, Basic, MDEC, Pivot, and Pivot+, on 6 small real-world graphs, respectively.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

https://networkrepository.com/index.php
https://networkrepository.com/index.php

77:20 Qiangqiang Dai et al.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

INF

10
1

10
2

10
3

10
4

10
5

T
im

e
 (

se
c
)

Number of results

RSA
Basic

MDEC
Pivot

Pivot+

(a) lolgop (𝑠 = 1)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

T
im

e
 (

se
c
)

Number of results

RSA
Basic

MDEC

Pivot
Pivot+

(b) web-edu (𝑠 = 1)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 1 2 3 4

T
im

e
 (

se
c
)

s

RSA
Basic

MDEC

Pivot
Pivot+

(c) lolgop (Output 10
5
results)

10
-2

10
-1

10
0

10
1

10
2

10
3

 1 2 3 4

T
im

e
 (

se
c
)

s

RSA
Basic

MDEC

Pivot
Pivot+

(d) web-edu (Output 10
5
results)

Fig. 4. Delay of various algorithms on real-world graphs.

The column #Nums in Table 2 denotes the number of maximal 𝑠-defective cliques in each graph

with a specified parameter 𝑠 . Note that we set the runtime of an algorithm to “INF” if it cannot

terminate within 24 hours. As can be seen, both Pivot and Pivot+ substantially outperform Basic
and MDEC. This result indicates that the proposed pivoting technique indeed plays a crucial role

in pruning unnecessary computations of the enumeration procedure. Specifically, our algorithms

Pivot and Pivot+ are orders of magnitude faster than Basic and RSA, which demonstrates the

high-efficiency of our pivot-based algorithms. We also notice that the performance of Basic and
MDEC is comparable on all tested datasets. This result suggests that the adaption of the existing

maximum 𝑠-defective clique algorithm [13] cannot work well for the maximal 𝑠-defective clique

enumeration problem, because there still exist a large number of non-maximal 𝑠-defective cliques

explored by the algorithm.

When comparing the two pivot-based algorithms Pivot and Pivot+, we can observe that if 𝑠

is no larger than 3, Pivot+ is often faster than Pivot on most datasets. This result confirms that

the optimization techniques developed in Section 4.3 is very effective when 𝑠 is small. When 𝑠

gets larger, Pivot+ may generate more non-maximal 𝑠-defective cliques in the recursive procedure

(Line 8 of Algorithm 6), thus degrading the performance of the algorithm. In practice, we suggest

to use Pivot+ to enumerate all maximal 𝑠-defective cliques of a graph if 𝑠 ≤ 3, otherwise it is better

to use Pivot.
We can also observe that RSA works well when 𝑠 is small, but it is often very costly when 𝑠 ≥ 3.

Moreover, we can see that for small dense graphs, RSA is often much faster than Basic and MDEC
when 𝑠 ≤ 2. For example, on scc-enron, RSA can output all maximal 1-defective cliques using only

0.08 seconds, while Basic andMDEC cannot terminate within 24 hours. This result indicates that

RSA is not only with theoretical interests, but it also works well in small real-world graphs given

that 𝑠 ≤ 2. In addition, since RSA can output two consecutive results within polynomial time, it

might be useful for the applications that only requires a part of results.

Exp-2: Time delay of various algorithms. Fig. 4 shows the runtime of each algorithm on lolgop
and web-edu with varying 𝑠 and varying the number of results. The results on other datasets

are consistent. From Fig. 4, we can see that the runtime of RSA scales linearly with respect to

(w.r.t.) the number of results, which confirms our polynomial-delay time complexity analysis of

RSA in Section 3.2. Moreover, the pivot-based algorithms Pivot and Pivot+, although they cannot

guarantee a polynomial-delay time complexity in theory, always achieve the best performance

among all tested algorithms under all parameter settings. This is mainly attributed to the fact that

the proposed pivoting technique avoids a large number of redundant computations. However, the

runtime of Basic andMDEC on some datasets, such as lolgop, may increases exponentially with

the number of returned results, indicating that these baselines involve a large amount of redundant

computations. In addition, when specifying the desired number of output results (e.g 10
5
results),

the runtime of all our algorithms increases very smoothly as 𝑠 increases. These results further

confirm that our algorithms are also useful for applications that only need to obtain a part of results

even when 𝑠 > 2.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

Maximal Defective Clique Enumeration 77:21

0

2

4

6

8

INF

 8 10 12 14 16 18 20

T
im

e
 (

s
e
c
)

q

Basic
MDEC
Pivot2

Pivot2+

(a) dblp-2010 (𝑠 = 2)

0

2

4

6

8

INF

 8 10 12 14 16 18 20
T

im
e
 (

s
e
c
)

q

Basic
MDEC
Pivot2

Pivot2+

(b) ca-citeseer (𝑠 = 2)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 8 10 12 14 16 18 20

T
im

e
 (

s
e
c
)

q

Basic
MDEC
Pivot2

Pivot2+

(c) wikipedia2009 (𝑠 = 2)

10
2.0

10
2.5

10
3.0

10
3.5

10
4.0

10
4.5

INF

 8 10 12 14 16 18 20

T
im

e
 (

s
e
c
)

q

Basic
MDEC
Pivot2

Pivot2+

(d) flixster (𝑠 = 2)

10
1

10
2

10
3

10
4

INF

 8 10 12 14 16 18 20

T
im

e
 (

s
e
c
)

q

Basic
MDEC
Pivot2

Pivot2+

(e) socfb-B-anon (𝑠 = 2)

Fig. 5. Runtime of different algorithms with varying 𝑞 on large real-world graphs.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

T
im

e
 (

s
e
c
)

|V|

Pivot2
Pivot2+

(a) 𝑠 = 2, 𝑞 = 12

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

T
im

e
 (

s
e
c
)

|E|

Pivot2
Pivot2+

(b) 𝑠 = 2, 𝑞 = 12

Fig. 6. Scalability testing (socfb-B-anon).

10
0

10
1

10
2

10
3

Unk.

 1 2 3 4

R
a
ti

o
 o

f
ti

m
e

s

dblp
cites
wipd
flixs
anon

(a) 𝑞 = 12

10
-1

10
0

10
1

10
2

10
3

Unk.

 1 2 3 4

R
a
ti

o
 o

f
ti

m
e

s

dblp
cites
wipd

flixs
anon

(b) 𝑞 = 20

Fig. 7. The ratios of the runtime of enumerating maxi-
mal (𝑠 + 1)-plexes to the runtime of enumerating max-
imal 𝑠-defective cliques on various datasets with the
same parameters.

Exp-3: Results of enumerating all relatively-large maximal 𝑠-defective cliques. Fig. 5 shows
the results of Basic,MDEC, Pivot2, and Pivot2+ on 5 large real-world graphs with 𝑠 = 2 and varying

𝑞. The results are consistent for other 𝑠 values. Note that for a fair comparison, in this experiment,

we also make use of the Property 2 to reduce the size of the candidate set in algorithms Basic and
MDEC. That is to say, the only difference between Basic (MDEC) and Pivot2 in this experiment is

whether the proposed pivoting technique is used or not. From Fig. 5, we can observe that Pivot2+
consistently outperforms the other algorithms on all datasets. Specifically, under most parameter

settings, Pivot2+ can be more than two orders of magnitude faster than Pivot2 and Basic. This
result indicates that the proposed pivoting technique is indeed very effective in improving the

performance of enumerating maximal 𝑠-defective cliques. Moreover, when comparing Pivot2 and
Basic (MDEC), we can see that Basic (MDEC) cannot handle most large real-world graphs, while

Pivot2 is still very efficient to process all graphs with most parameter settings. This result indicates

that the proposed pivoting technique indeed plays an important role in reducing unnecessary

computations.

Exp-4: Scalability testing. To evaluate the scalability of the proposed pivot-based algorithms, we

generate eight subgraphs by randomly sampling 20-80% vertices or edges from the largest dataset

socfb-B-anon. Similar results can also be observed on the other datasets. We run our algorithms

on these subgraphs and report their runtime. Fig. 6 depicts the results of Pivot2 and Pivot2+ with
𝑠 = 2. As can be seen, the runtime of the proposed pivot-based algorithms increases smoothly

as |𝑉 | or |𝐸 | increases. This result indicates that the proposed pivot-based algorithms scale well

on real-world graphs. In addition, Pivot2+ always shows excellent performance in all parameter

settings compared to Pivot2, which further demonstrates that Pivot2+ is capable of handling large

real-world graphs.

6.3 Effectiveness Testing
In this subsection, we evaluate the effectiveness of our solutions. To this end, we compare the

𝑠-defective clique model with the 𝑘-plex model which is a well-known relaxed clique model and is

also closely-related to the 𝑠-defective clique model. Specifically, a subset 𝐶 of 𝑉 is called a 𝑘-plex

if every vertex in 𝐺 (𝐶) has at least |𝐶 | − 𝑘 neighbors. When 𝑘 = 1, the 𝑘-plex is a clique which

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

77:22 Qiangqiang Dai et al.

Table 3. Prediction accuracy on a PPI network
(CORE).

𝑠
(𝑠 + 1)-plexes 𝑠-defective cliques

#Nums Accuracy #Nums Accuracy

1 206 0.621 160 0.6

2 673 0.513 569 0.614
3 2192 0.382 1390 0.608
4 29246 0.182 3530 0.465

Table 4. Statistical analysis on stock markets.

𝜃
Market graph size Maximum size (varying 𝑠)

𝑛 𝑚 𝑑𝑚𝑎𝑥 0 1 2 5 10

0.4 2784 218956 1166 116 117 118 120 123

0.5 2154 56218 694 57 58 59 60 63

0.6 1254 15488 260 38 39 39 41 42

0.7 562 3908 47 18 18 19 20 22

0.8 224 606 16 8 8 8 9 10

corresponds to the case of 𝑠 = 0 for the 𝑠-defective clique. Moreover, it is easy to check that any

𝑠-defective clique is also an (𝑠 + 1)-plex. Therefore, the 𝑘-plex model is a very good baseline for our

experiments.

Exp-5: Runtime of enumerating different relaxed cliques. In this experiment, we compare

the runtime of our pivot-based algorithm (Pivot2+) and that of Plex (the state-of-the-art maximal

(𝑠 + 1)-plexes enumeration algorithm in [49, 54]). Fig. 7 shows the results on each dataset with

varying 𝑠 . The vertical coordinate in the figures represents the ratios of the runtime of Plex to
the runtime of Pivot2+. “Unk.” denotes that the Plex algorithm cannot complete the computations

within 24 hours. Here we also abbreviate the name of each dataset to reduce the space usage in

the figures. From Fig. 7, we can observe that Pivot2+ exhibits much better performance than Plex
on all datasets. More specifically, Pivot2+ can be more than two orders of magnitude faster than

Plex on most parameter settings, and the gap between the runtime of Plex and Pivot2+ increases
dramatically as 𝑠 increases. The results confirm that the 𝑠-defective clique model is indeed easier to

compute than the 𝑘-plex model.

Exp-6: Protein interaction prediction. In this case study, we test the effectiveness of the 𝑠-

defective clique model to predict implicit protein interactions in a protein-protein interaction (PPI)

network. As shown in [3, 23], a protein complex is usually in the form of a complete subgraph (i.e.,

each pair of proteins in a protein complex is interacting with each other). Due to this property,

the problem of predicting implicit protein interactions is often considered as a clique complement
problem, which is slightly different from the classic link prediction problem. Thus, to identify

implicit protein interactions, it is better to use a relaxed clique model in which all missing edges can

be considered as implicit protein interactions. The 𝑠-defective clique is a good choice for this goal.

Since the 𝑘-plex is a widely-used relaxed clique model and is also closely related to the 𝑠-defective

clique model, it can be served as a very good baseline for this case study. In the experiment, we

first use the proposed algorithms and the algorithms in [49, 54] to compute 𝑠-defective cliques

and (𝑠 + 1)-plexes with size no less than 10, respectively. Then, we add all missing edges in each

detected relaxed clique and evaluate the accuracy of edges detected by the relaxed clique models.

Table 3 shows the prediction accuracy of these two different models (i.e, the ratio of the number

of true positive edges to all added edges) on CORE [26], which contains 2708 vertices and 7123

edges and the ground truth protein interactions can be determined by the MIPS protein database

[26]. From Table 3, we observe that the 𝑠-defective clique model is often more accurate than the

(𝑠 + 1)-plex model with varying 𝑠 (except for 𝑠 = 1, and in this case the 𝑠-defective clique model is

also comparable to the 𝑘-plex model). Moreover, with the increase of 𝑠 , the accuracy gap between

the 𝑠-defective clique model and the (𝑠 + 1)-plex model tends to be larger. This result demonstrates

the high effectiveness of our solutions for protein interaction prediction in PPI networks.

Exp-7: Collaboration relationship prediction on DBLP. Here we evaluate the effectiveness of
the 𝑠-defective clique model to predict the collaboration relationship on DBLP (https://dblp.uni-

trier.de). To this end, we use the DBLP collaboration network before 2011, and evaluate the prediction

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

https://dblp.uni-trier.de
https://dblp.uni-trier.de

Maximal Defective Clique Enumeration 77:23

Han

P

Yan

We

Charu C. Aggarwal

(a) Maximal 1-defective

clique

Ph

Gu

Xife

Wei Fan
Jian Pei

(b) Maximal 2-plex (maximal

2-defective clique)

Philip S. Yu

Xia

Wei Fan

arwal

Pei

Ch

(c) Maximal 3-plex

Fig. 8. Collaboration relationship prediction on DBLP (red and blue edges are the true and false positive
collaborators respectively).

accuracy using the full DBLP dataset. Fig. 8 shows the results of Prof. Jiawei Han’s communities

which are generated by the 𝑠-defective clique model and the (𝑠 + 1)-plex model. As can be seen,

the 𝑠-defective clique model can exactly predict a new collaboration relationship (Prof. Charu C.

Aggarwal and Prof. Xifeng Yan in Fig. 8(a)) with 𝑠 = 1, while the (𝑠 + 1)-plex model will introduce a

false-positive collaboration relationship (Prof. Jian Pei and Prof. Xiaohui Gu in Fig. 8(b)). Moreover,

when increasing 𝑠 , (i.e, 𝑠 = 2), the result obtained by the 3-plex model (Fig. 8(c)) yields more false

positive relationships compared to the 2-defective clique model (Fig. 8(b)). This result further

confirm the high effectiveness of the 𝑠-defective clique model for implicit interaction prediction.

Exp-8: Statistical analysis on stock markets.We further apply the 𝑠-defective clique to conduct

a statistical analysis on a US stock market dataset
1
, which contains the daily trading information

for 7,195 financial instruments. The market graphs are constructed by the method used in [8, 9].

Specifically, for each pair of instruments 𝑖 and 𝑗 , if the correlation coefficient 𝐶𝑖 𝑗 between them is

no less than a given threshold 𝜃 , we simply add an edge between 𝑖 and 𝑗 , which represents that the

instruments 𝑖 and 𝑗 have a similar price fluctuation behavior. Denote by 𝑃𝑖 (𝑡) the price of a financial
instrument on day 𝑡 and 𝑅𝑖 (𝑡) = 𝑙𝑛(𝑃𝑖 (𝑡)/𝑃𝑖 (𝑡 − 1)) the logarithm of the return of instrument 𝑖 on

the day from 𝑡 − 1 to 𝑡 . Then, the correlation coefficient between a pair of instruments 𝑖 and 𝑗 can

be defined as𝐶𝑖 𝑗 =
𝐸 (𝑅𝑖𝑅 𝑗)−𝐸 (𝑅𝑖)𝐸 (𝑅 𝑗)√

𝑉𝑎𝑟 (𝑅𝑖)𝑉𝑎𝑟 (𝑅 𝑗)
, where 𝐸 (𝑅𝑖) and𝑉𝑎𝑟 (𝑅𝑖) are the expectation and variance of

the returns of instrument 𝑖 over a given period of days, respectively. As can be seen, the value of𝐶𝑖 𝑗

lies between −1 to 1, and the larger 𝐶𝑖 𝑗 is, the more correlative the price fluctuations of 𝑖 and 𝑗 are.

Clearly, a cohesive subgraph on a market graph represents a set of instruments with similar price

fluctuations. In our experiment, we use instrument trading prices from 2000 to 2006 to construct

our market graphs. Table 4 shows statistics of the market graphs with varying 𝜃 and the exact sizes

of the maximum 𝑠-defective cliques on each market graph with varying 𝑠 . From Table 4, we observe

that the sizes of the maximum 𝑠-defective cliques are relatively large, which implies that there are a

large number of instruments whose price fluctuations behave similarly over time in stock markets.

Moreover, as the increase of 𝑠 , the size of maximum 𝑠-defective clique increases accordingly, which

means that some indirectly-linked (but closely-related) financial instruments can also be detected

by the 𝑠-defective clique model. For instance, when 𝜃 = 0.6, the size of maximum clique (𝑠 = 0) is 38,

which are the instruments related to real estate, while increasing 𝑠 to 5, three additional instruments

“cpt.us”, “bxp.us”, and “els.us” can be detected by the 𝑠-defective clique. These additional instruments

are very relevant to the real estate investment.These results indicate that the 𝑠-defective clique
model is a powerful tool in the application of statistical analysis on stock markets.

7 RELATEDWORKS

Maximal clique enumeration. The maximal clique enumeration problem had been well studied in

recent decades [10, 12, 19, 21, 38, 47]. Perhaps, the most impressive technique is the Bron-Kerbosch

1
https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs

77:24 Qiangqiang Dai et al.

(BK) algorithm [10], which is a backtracking enumeration algorithm with a pivoting technique.

Following this work, many interesting variants of the BK algorithms were proposed. For example,

Tomita et al. [47] proposed an 𝑂 (3𝑛/3) BK algorithm with a careful-designed pivoting technique.

Such an algorithm was shown to be optimal, as there exists an graph having 𝑂 (3𝑛/3) maximal

cliques in the worst case [36]. Eppstein et al. [21] presented an improved BK algorithm with the

time complexity closely related to the degeneracy of the graph [32]. In addition, a refined pivot-

selection technique [38] and a dominated-set based technique [12] were also developed to improve

the BK algorithm when processing dense graphs. For sparse graphs, however, the bit-parallelism

techniques were proposed to improve the BK algorithm [19, 43]. Recently, the maximal clique

model was also generalized to other types of graphs. Notable examples include maximal cliques

on uncertain graphs [30, 37, 55], maximal bipartite cliques on bipartite graphs [1, 28, 52], maximal

cliques on temporal graphs [25, 42], and maximal signed cliques on signed graphs [14, 29]. Unlike

all these mentioned maximal clique algorithms, this paper focuses mainly on the 𝑠-defective clique

model and developing efficient techniques to enumerate all maximal 𝑠-defective cliques.

Maximal relaxed clique enumerations. In real-world applications, using the clique model to

mine cohesive subgraphs may be overly strict due to the presence of noises in graph datasets. Many

relaxed clique models have been developed as alternatives. Except for the 𝑠-defective clique, several

representative relaxed clique models include 𝑘-plex [7, 17, 44, 54], 𝑠-bundle [40, 53], 𝑠-clique [6, 35],

and 𝛾-quasi-clique [34, 41]. Existing algorithms for enumerating all these relaxed cliques can be

classified into two categories. The first category of algorithms are to convert the original problem

to the problem of enumerating all maximal relaxed cliques in each almost-satisfying subgraphs

[15] if the relaxed clique model admits the hereditary property, such as the techniques presented

in [6, 7]. The other category of algorithms are based on the set enumeration technique or the

branch-and-bound technique to check whether each subset of a given graph is the maximal relaxed

clique [17, 34, 41, 53, 54]. In addition, some of these models were also extended to different types of

graphs. For instance, [51] developed an algorithm to enumerate all maximal 𝑘-plexes in bipartite

graphs. [33] studied the problem of finding stable quasi-cliques in temporal graphs. In this work,

we focus on developing efficient solutions with nontrivial time complexity guarantees to enumerate

all and relatively-large 𝑠-defective cliques.

8 CONCLUSION
In this paper, we systematically investigate themaximal 𝑠-defective clique enumeration problem, and

propose several novel and efficient algorithms to solve this problem. The first proposed algorithm is

an output-sensitive algorithm based on a carefully-developed reverse search technique, which can

return any consecutive solutions within polynomial time. The second proposed algorithm is a more

practical algorithm based on a branch-and-bound enumeration and a novel pivoting technique.

We prove that the time complexity of our pivot-based branch-and-bound algorithm can break the

𝑂 (2𝑛) worst-case enumeration complexity. We also develop several new pruning techniques to

further improve the efficiency of our pivot-based branch-and-bound algorithm. Additionally, we

also extend our pivot-based branch-and-bound algorithm to enumerate all maximal subgraphs that

satisfy a hereditary property. Finally, the results of comprehensive experiments demonstrate the

efficiency, effectiveness, and scalability of the proposed approaches.

ACKNOWLEDGMENTS
This work was partially supported by (i) National Key Research and Development Program of

China 2020AAA0108503, (ii) NSFC Grants U2241211, 62072034, U1809206 and (iii) CCF-Huawei

Populus Grove Fund. Rong-Hua Li is the corresponding author of this paper.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

Maximal Defective Clique Enumeration 77:25

REFERENCES
[1] Aman Abidi, Rui Zhou, Lu Chen, and Chengfei Liu. 2020. Pivot-based Maximal Biclique Enumeration. In IJCAI.

3558–3564.

[2] David Avis and Komei Fukuda. 1996. Reverse Search for Enumeration. Discret. Appl. Math. 65, 1-3 (1996), 21–46.
[3] Gary D. Bader and Christopher WV Hogue. 2002. Analyzing yeast protein–protein interaction data obtained from

different sources. Nature biotechnology 20, 10 (2002), 991–997.

[4] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores Decomposition of Networks. CoRR
cs.DS/0310049 (2003).

[5] Punam Bedi and Chhavi Sharma. 2016. Community detection in social networks. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 6, 3 (2016), 115–135.

[6] Rachel Behar and Sara Cohen. 2018. Finding All Maximal Connected s-Cliques in Social Networks. In EDBT. 61–72.
[7] Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. 2015. Efficient Enumeration of Maximal k-Plexes. In SIGMOD.

431–444.

[8] Vladimir Boginski, Sergiy Butenko, and PanosMPardalos. 2005. Statistical analysis of financial networks. Computational
statistics & data analysis 48, 2 (2005), 431–443.

[9] Vladimir Boginski, Sergiy Butenko, and Panos M Pardalos. 2006. Mining market data: A network approach. Computers
& Operations Research 33, 11 (2006), 3171–3184.

[10] Coenraad Bron and Joep Kerbosch. 1973. Finding All Cliques of an Undirected Graph (Algorithm 457). Commun. ACM
16, 9 (1973), 575–576.

[11] Sergiy Butenko and Wilbert E. Wilhelm. 2006. Clique-detection models in computational biochemistry and genomics.

Eur. J. Oper. Res. 173, 1 (2006), 1–17.
[12] Frédéric Cazals and Chinmay Karande. 2006. Reporting maximal cliques: new insights into an old problem. Ph. D.

Dissertation. INRIA.

[13] Xiaoyu Chen, Yi Zhou, Jin-Kao Hao, and Mingyu Xiao. 2021. Computing maximum k-defective cliques in massive

graphs. Comput. Oper. Res. 127 (2021), 105131.
[14] Zi Chen, Long Yuan, Xuemin Lin, Lu Qin, and Jianye Yang. 2020. Efficient Maximal Balanced Clique Enumeration in

Signed Networks. In WWW. 339–349.

[15] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. 2008. Generating all maximal induced subgraphs for hereditary

and connected-hereditary graph properties. J. Comput. Syst. Sci. 74, 7 (2008), 1147–1159.
[16] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. 2019. Listing Maximal Subgraphs Satisfying Strongly

Accessible Properties. SIAM J. Discret. Math. 33, 2 (2019), 587–613.
[17] Alessio Conte, Tiziano De Matteis, Daniele De Sensi, Roberto Grossi, Andrea Marino, and Luca Versari. 2018. D2K:

Scalable Community Detection in Massive Networks via Small-Diameter k-Plexes. In KDD. 1272–1281.
[18] Qiangqiang Dai, Rong-Hua Li, Meihao Liao, and Guoren Wang. 2023. Maximal Defective Clique Enumeration (full

version). https://github.com/qq-dai/DefectiveClique/blob/main/DefectiveClique-full.pdf

[19] Naga Shailaja Dasari, Desh Ranjan, and Mohammad Zubair. 2014. pbitMCE: A bit-based approach for maximal clique

enumeration on multicore processors. In ICPADS. 478–485.
[20] Nan Du, Bin Wu, Xin Pei, Bai Wang, and Liutong Xu. 2007. Community detection in large-scale social networks. In

WebKDD workshop. 16–25.
[21] David Eppstein, Maarten Löffler, and Darren Strash. 2010. Listing All Maximal Cliques in Sparse Graphs in Near-Optimal

Time. In ISAAC, Vol. 6506. 403–414.
[22] V. Fomin Fedor and Kratsch Dieter. 2010. Exact Exponential Algorithms. Springer.
[23] Anne-Claude Gavin, Markus Bösche, Roland Krause, Paola Grandi, Martina Marzioch, Andreas Bauer, Jörg Schultz,

Jens M. Rick, Anne-Marie Michon, Cristina-Maria Cruciat, et al. 2002. Functional organization of the yeast proteome

by systematic analysis of protein complexes. Nature 415, 6868 (2002), 141–147.
[24] Eric Harley, Anthony Bonner, and Nathan Goodman. 2001. Uniform integration of genome mapping data using

intersection graphs. Bioinformatics 17, 6 (2001), 487–494.
[25] Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. 2016. Enumerating maximal cliques in

temporal graphs. In ASONAM. 337–344.

[26] George Kollios, Michalis Potamias, and Evimaria Terzi. 2013. Clustering Large Probabilistic Graphs. IEEE Trans. Knowl.
Data Eng. 25, 2 (2013), 325–336.

[27] Andrea Lancichinetti and Santo Fortunato. 2009. Community detection algorithms: a comparative analysis. Physical
review E. 80, 5 (2009), 056117.

[28] Jinyan Li, Guimei Liu, Haiquan Li, and Limsoon Wong. 2007. Maximal Biclique Subgraphs and Closed Pattern Pairs of

the Adjacency Matrix: A One-to-One Correspondence and Mining Algorithms. IEEE Trans. Knowl. Data Eng. 19, 12
(2007), 1625–1637.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

https://github.com/qq-dai/DefectiveClique/blob/main/DefectiveClique-full.pdf

77:26 Qiangqiang Dai et al.

[29] Rong-Hua Li, Qiangqiang Dai, Lu Qin, Guoren Wang, Xiaokui Xiao, Jeffrey Xu Yu, and Shaojie Qiao. 2018. Efficient

Signed Clique Search in Signed Networks. In ICDE. 245–256.
[30] Rong-Hua Li, Qiangqiang Dai, Guoren Wang, Zhong Ming, Lu Qin, and Jeffrey Xu Yu. 2019. Improved Algorithms for

Maximal Clique Search in Uncertain Networks. In ICDE. 1178–1189.
[31] Rong-Hua Li, Qiushuo Song, Xiaokui Xiao, Lu Qin, Guoren Wang, Jeffrey Xu Yu, and Rui Mao. 2022. I/O-Efficient

Algorithms for Degeneracy Computation on Massive Networks. IEEE Trans. Knowl. Data Eng. 34, 7 (2022), 3335–3348.
[32] Don R. Lick and Arthur T. White. 1970. k-Degenerate graphs. Canadian Journal of Mathematics 22, 5 (1970), 1082–1096.
[33] Longlong Lin, Pingpeng Yuan, Rong-Hua Li, Jifei Wang, Ling Liu, and Hai Jin. 2022. Mining Stable Quasi-Cliques on

Temporal Networks. IEEE Trans. Syst. Man Cybern. Syst. 52, 6 (2022), 3731–3745.
[34] Guimei Liu and Limsoon Wong. 2008. Effective Pruning Techniques for Mining Quasi-Cliques. In ECML/PKDD,

Vol. 5212. 33–49.

[35] R. Duncan Luce. 1950. Connectivity and generalized cliques in sociometric group structure. Psychometrika 15, 2 (1950),
169–190.

[36] John W. Moon and Leo Moser. 1965. On cliques in graphs. Israel journal of Mathematics 3, 1 (1965), 23–28.
[37] Arko Mukherjee, Pan Xu, and Srikanta Tirthapura. 2017. Enumeration of Maximal Cliques from an Uncertain Graph.

IEEE Trans. Knowl. Data Eng. 29, 3 (2017), 543–555.
[38] Kevin A. Naudé. 2016. Refined pivot selection for maximal clique enumeration in graphs. Theor. Comput. Sci. 613

(2016), 28–37.

[39] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. 2005. Uncovering the overlapping community structure

of complex networks in nature and society. nature 435, 7043 (2005), 814–818.
[40] Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. 2013. On clique relaxation models in network analysis. Eur. J.

Oper. Res. 226, 1 (2013), 9–18.
[41] Jian Pei, Daxin Jiang, and Aidong Zhang. 2005. On mining cross-graph quasi-cliques. In KDD. 228–238.
[42] Hongchao Qin, Rong-Hua Li, Guoren Wang, Lu Qin, Yurong Cheng, and Ye Yuan. 2019. Mining Periodic Cliques in

Temporal Networks. In ICDE. 1130–1141.
[43] Pablo San Segundo, Jorge Artieda, and Darren Strash. 2018. Efficiently enumerating all maximal cliques with bit-

parallelism. Comput. Oper. Res. 92 (2018), 37–46.
[44] Stephen B. Seidman and Brian L. Foster. 1978. A graph-theoretic generalization of the clique concept. Journal of

Mathematical Sociology 6, 1 (1978), 139–154.

[45] Uno Takeaki. 2003. Two general methods to reduce delay and change of enumeration algorithms. Technical Report.
Technical Report.

[46] Etsuji Tomita, Tatsuya Akutsu, and Tsutomu Matsunaga. 2011. Efficient algorithms for finding maximum and maximal
cliques: Effective tools for bioinformatics. IntechOpen.

[47] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time complexity for generating all maximal

cliques and computational experiments. Theor. Comput. Sci. 363, 1 (2006), 28–42.
[48] Svyatoslav Trukhanov, Chitra Balasubramaniam, Balabhaskar Balasundaram, and Sergiy Butenko. 2013. Algorithms

for detecting optimal hereditary structures in graphs, with application to clique relaxations. Comput. Optim. Appl. 56,
1 (2013), 113–130.

[49] ZhengrenWang, Yi Zhou,Mingyu Xiao, and Bakhadyr Khoussainov. 2022. ListingMaximal k-Plexes in Large Real-World

Graphs. In WWW.

[50] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein. 2006. Predicting interactions in protein networks

by completing defective cliques. Bioinform. 22, 7 (2006), 823–829.
[51] Kaiqiang Yu, Cheng Long, Shengxin Liu, and Da Yan. 2022. Efficient Algorithms for Maximal k-Biplex Enumeration. In

SIGMOD. 860–873.
[52] Yun Zhang, Charles A. Phillips, Gary L. Rogers, Erich J. Baker, Elissa J. Chesler, and Michael A. Langston. 2014. On

finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data

types. BMC Bioinform. 15 (2014), 110.
[53] Yi Zhou, Weibo Lin, Jin-Kao Hao, Mingyu Xiao, and Yan Jin. 2022. An effective branch-and-bound algorithm for the

maximum s-bundle problem. Eur. J. Oper. Res. 297, 1 (2022), 27–39.
[54] Yi Zhou, Jingwei Xu, Zhenyu Guo, Mingyu Xiao, and Yan Jin. 2020. Enumerating Maximal k-Plexes with Worst-Case

Time Guarantee. In AAAI. 2442–2449.
[55] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. 2010. Finding top-k maximal cliques in an uncertain graph.

In ICDE. 649–652.

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 77. Publication date: May 2023.

	Abstract
	1 Introduction
	2 Problem Statement
	3 A Polynomial-Delay Algorithm
	3.1 A Brief Overview of Reverse Search
	3.2 The Proposed Reverse Search Algorithm

	4 New Pivot-based Algorithms
	4.1 A Basic Branch-and-Bound Algorithm
	4.2 A Novel Pivot-based Enumeration Algorithm
	4.3 Optimization Techniques

	5 A General Pivoting Paradigm
	6 Experiments
	6.1 Experimental Setup
	6.2 Efficiency Testing
	6.3 Effectiveness Testing

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

