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Abstract—Periodic group behaviors often exist in temporal
interaction networks, such as monthly group meetings, quarterly
animal migrations, and yearly birthday parties. In real life, these
events are usually quasi-periodic, meaning that the time intervals
between two adjacent events are nearly constant but not exactly
constant. Most existing studies mainly focus on identifying exact
periodic group behaviors, which may result in an incomplete
detection of periodic patterns in temporal networks. To fill this
gap, we focus on a quasi-periodic community mining problem,
which aims to find the most representative cohesive subgraphs,
including the quasi-periodic k-core and quasi-periodic k-clique.
The number of quasi-periodic communities is much larger than
that of periodic communities, since the number of quasi-periodic
sub-sequences is larger than that of periodic sub-sequences in
a given time sequence. To efficiently compute the quasi-periodic
communities, we propose a novel two-stage framework. In the
first stage, the framework checks whether the time sequence of
each vertex contains quasi-periodic sub-sequences. To this end,
we develop a new structure, the DAG oracle, which comprises
a set of concise DAGs that enables rapid extraction of all
quasi-periodic sub-sequences. Based on the DAG oracle, we
can easily compute all quasi-periodic sub-sequences for every
vertex. In the second stage, the framework computes local
quasi-periodic subgraphs that contain the vertex, which allows
for the application of existing community mining algorithms.
Given the large number of these subgraphs, we propose several
carefully-designed pruning rules to further reduce redundant
computations. Extensive experiments on 5 real-life datasets
demonstrate the efficiency and effectiveness of our proposed
solutions.

I. INTRODUCTION

Temporal networks are networks in which each temporal
edge between node u and v is associated with a created time t,
denoted by (u, v, t). These networks often consist of periodic
group behaviors, such as the activities of monthly group
meetings, quarterly animal migrations, and yearly birthday
parties, which often happen periodically in communities.
However, the above events are quasi-periodic in real life,
which means that the time intervals between two adjacent
events are close to a constant but not precisely constant. For
example, Figure 1 (a) shows an example of a monthly group
meeting that is held periodically on the first day of each
month. However, the meeting is actually quasi-periodic since
the interval is not constant but ranges from 28 to 31 days.
Figure 1 (b) shows an example of a yearly birthday party that
is usually celebrated with an interval of 365 days, but there is
also an interval of 366 days when considering leap years. Some
other periodic communities exhibit quasi-periodicity because
the schedule is delayed or moved up a bit due to unexpected
events.

Quasi-periodic communities are useful in many potential
applications, such as social network analysis and management.
In contemporary social networks, a wealth of data concerning
human interactions is documented. For instance, in datasets
built upon facebook [1], users can establish a connection when
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Fig. 1. Example of quasi-periodic communities in real life

they engage with the same post. Mining quasi-periodic com-
munities in these datasets assists administrators in analyzing
user gathering trends and forecasting potential social events,
offering benefits in terms of targeted advertising and server
maintenance. Quasi-periodic communities can also be applied
in wildlife research and conservation. These patterns can be
observed in natural animal herds, since many wild animals
usually gather in groups and can be influenced by periodic
factors, such as climates and human activities. Temporal
networks can be built upon interactions of wild animals. For
example, ecologists can tag the animals with wireless sensors
to build proximity networks among animals [2]. By mining
quasi-periodic communities in those networks, ecologists can
gain insights into the migration and interaction patterns of
wild animals, and implement essential conservation measures
for animal herds that do not follow the above patterns (due to
some unexpected events).

Therefore, it is significant to mine the quasi-periodic com-
munities in the temporal network. In this paper, we study
the quasi-periodic community mining problem, which aims
to find the most representative cohesive subgraphs, including
the quasi-periodic k-core and quasi-periodic k-clique.

There are some existing studies [3]–[5] that have already
investigated the problem of periodic subgraph mining in tem-
poral networks. For example, Lahiri et al. [3], [4] studied the
problem of mining periodic subgraphs in temporal networks.
However, in order to efficiently mining all periodic cohesive
subgraphs, we should not enumerate all periodic subgraphs
first, because many fringe nodes in the temporal graph can be
safely pruned before enumerating periodic cohesive subgraphs.
Therefore, directly using existing periodic subgraph mining
techniques for mining periodic cohesive subgraphs are often
inefficient. Recently, Qin et al. [6] studied the problem of
mining periodic cliques in temporal networks; Zhang et al. [7]
studied the problem of mining seasonal-periodic subgraphs.
These methods can search the periodic cohesive subgraphs
efficiently (e.g., the method proposed in [6] takes only 400
seconds to find all the results on a temporal graph with 12
million edges), but they do not consider the quasi-periodicity
of the communities. The problem of mining quasi-periodic
communities is often much harder than the problem of mining
periodic communities, because quasi-periodicity can lead to a
larger search space. To the best of our knowledge, we are the



first to study the problem of quasi-periodic community mining
in temporal networks.

To identify all quasi-periodic communities, one straightfor-
ward way is to find communities without considering temporal
information first, and then check whether the communities
are quasi-periodic. Clearly, such an approach is inefficient, as
the number of possible communities can be very large in a
temporal graph. Another potential method is to enumerate all
maximal quasi-periodic subgraphs first and then find cohesive
parts in those subgraphs to be the quasi-periodic communities.
However, enumerating maximal quasi-periodic subgraphs is
time- and space-consuming since the total number of quasi-
periodic subgraphs is much larger than that of periodic
subgraphs. This is because for a sequence T of maximum
value Tmax, the number of periodic sub-sequence of length
σ is O(T 2

max) [6] but the the number of quasi-periodic
sub-sequence of length σ will raise to O(T 2

max(Tmaxε +
1)σ−1) (Tmaxε + 1 > 1, as proved in Section III). As a
consequence, the main challenge is how to enumerate quasi-
periodic subgraphs properly and find the communities in those
subgraphs with fewer redundant computations.

To address these challenges, we propose a novel two-
stage framework for mining quasi-periodic communities in
a temporal graph. In the first stage, the framework checks
whether a vertex can be part of a quasi-periodic subgraph
by mining quasi-periodic sub-sequences in time sequence
associated to the vertex, and deletes vertex that can not be
part of a quasi-periodic subgraph. To achieve this, we propose
a quasi-periodic sub-sequence mining algorithm based on a
novel structure: DAG oracle. The DAG oracle is a set of
compact DAGs, which can fully characterize all quasi-periodic
sub-sequences. Based on the DAG oracle, we can easily find
all quasi-periodic sub-sequences and avoid enumerating the
candidate sub-sequences for multiple times. Equipped with the
DAG oracle, the time complexity of mining all quasi-periodic
sub-sequences can be significantly reduced with a factor
O(Tmax). In the second stage, we utilize the reduced temporal
graph to identify quasi-periodic communities. We compute
local quasi-periodic subgraphs for each remaining vertex using
the quasi-periodic sub-sequences obtained in the first stage.
To reduce redundant computations, we further develop several
non-trivial pruning techniques while computing quasi-periodic
communities in those subgraphs.

Contributions. The main contributions are summarized as
follows.
New models. We propose two new quasi-periodic community
models based on the most representative cohesive subgraphs
(k-core and k-clique). Specifically, we propose two models: ε-
quasi σ-periodic k-core and ε-quasi σ-periodic k-clique. The
ε-quasi σ-periodic k-core is a k-core which appears in the
temporal network on a quasi-periodic time sequence of length
σ, where the differences between adjacent timestamps fall
within a range of [d, d(ε+1)]. The ε-quasi σ-periodic k-clique
model is defined similarly.
Novel algorithms. We develop several new algorithms to
enumerate all quasi-periodic communities. First, we propose
an algorithm based on DAG oracle to mine quasi-periodic
sub-sequences in a time sequence, which is a basic task in
quasi-periodic community mining. The DAG oracle is a set
of compact DAGs and allows us to quickly search for all
quasi-periodic sub-sequences. Second, we develop a two-stage
framework for quasi-periodic community enumeration. The

framework enumerates quasi-periodic communities for each
vertex from a local perspective and can significantly reduce
the cost of quasi-periodic community mining by integrating
several carefully-designed pruning techniques.
Experimental evaluation. We conduct extensive experiments
on five real-world temporal graphs to evaluate our proposed
methods. First, we perform case studies on the real-world
temporal graphs to evaluate the ability of quasi-periodic
communities to reveal quasi-periodic group behaviors. The
results show that our model can indeed find many interesting
periodic patterns that cannot be detected by existing methods.
Second, we evaluate the efficiency of the DAG oracle-based
algorithm for quasi-periodic sub-sequence mining on two time
sequences with different lengths. The results demonstrate that
our approach is much more efficient than traditional methods
in most cases. Finally, we evaluate the efficiency of our two-
stage framework for quasi-periodic community mining, and
the results show that our solution can be up to two orders of
magnitude faster than the state-of-the-art method.

Reproducibility. The source code of this paper is released on
Github: https://github.com/bruce1114/qpcommunity for repro-
ducibility purposes.

Organization. Section II introduces the basic definitions and
formulates the main problems. In Section III, we present our
proposed algorithm for mining quasi-periodic sub-sequences.
In Section IV, we introduce the framework to enumerate all
quasi-periodic communities. We evaluate the effectiveness of
our approach through experiments in Section V, and review
related work in Section VI. Finally, we conclude our work in
Section VII.

II. PRELIMINARIES

Let G = (V, E) be an undirected temporal graph, where V
and E are the sets of vertices and temporal edges, respectively.
The edges in E are of the form (u, v, t), where u and v are
vertices in V and t is the timestamp of each edge. The snapshot
of G at timestamp t is denoted as SNt = (Vt, Et) where
Vt = {u|(u, v, t) ∈ E} and Et = {(u, v)|(u, v, t) ∈ E}. The
de-temporal graph of the temporal graph G is denoted as G =
(V,E), where E = {(u, v)|(u, v, t) ∈ E}.

A graph GS = (VS , ES) is a subgraph of G if VS ⊆ V and
ES ⊆ E, which can be represented as GS ⊆ G (GS ⊂ G if
GS 6= G). For a vertex u ∈ V , NG(u) = {v|(u, v) ∈ E} is
the set of neighbors of u in G, and degG(u) = |NG(u)| is the
degree of u in G.

Definition 1 (ε-quasi σ-periodic time sequence ((ε, σ)-QPT)).
Given a time sequence T = (t1, t2, ..., tσ) and a real number
ε ≥ 0 (T is in ascending order with length σ and contains
no duplicate timestamps), T is an ε-quasi σ-periodic time
sequence only if:

∃d > 0,∀i = 1, 2, ..., σ − 1, d ≤ ti+1 − ti ≤ d(1 + ε). (1)

In other words, all differences between adjacent values of an
(ε, σ)-QPT are in a specific range of [d, d(1+ε)]. Definition 1
was first introduced in [8]. For an (ε, σ)-QPT T , let d′ =

min
i=1,...,σ−1

(ti+1 − ti), it is clear that Equation 1 still holds if

d = d′. For two time sequences T1 and T2, T1 ⊆ T2 indicates
that T1 is a sub-sequence of T2 or T1 is in T2. If not specified,
all time sequences in this paper are integer sequences and in
ascending order without duplicate values. For a time sequence
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Fig. 2. A sample temporal graph

v3 v4

v6 v7

(a) T = (20, 30, 40)

v3 v4 v5

v6 v7

(b) T = (1, 20, 40)

v4 v5

v6 v7

(c) T = (1, 20, 40)

Fig. 3. Sample MQPCore and MQPClique in Figure 2

T , DT = {tb − ta|ta, tb ∈ T, ta < tb}, DT
min, D

T
max are the

smallest and biggest element in DT respectively. Tmax is the
biggest timestamp in T .

Example 1. T = (1, 10, 20, 30, 40) is a (12%, 5)-QPT, since
∃9 > 0, 9 ≤ T [i + 1] − T [i] ≤ 9(1 + 12%) = 10.08, i =
0, 1, 2, 3.

Definition 2 (Support time sequence (SupT)). Given a tempo-
ral graph G = (V, E) and its de-temporal graph G = (V,E),
the support time sequence of a subgraph GS of G is the longest
sequence SupTG(GS) = (t1, t2, ...) satisfying GS ⊆ SNti
for all possible i. In particular, for an edge (u, v) ∈ E,
SupTG((u, v)) is equivalent to SupTG(({u, v}, {(u, v)})).
Definition 3 (ε-quasi σ-periodic subgraph ((ε, σ)-QPS)).
Given a temporal graph G, a two-tuple (GS , T ) represents
an ε-quasi σ-periodic subgraph if T is an (ε, σ)-QPT and
T ⊆ SupTG(GS).
Definition 4 (ε-quasi σ-periodic k-core). Given a temporal
graph G, an (ε, σ)-QPS (GS , T ) represents an ε-quasi σ-
periodic k-core in G if for each vertex u in GS , degGS (u) ≥ k.

It is important to note that in this paper, k-core is defined as
a connected subgraph. An ε-quasi σ-periodic k-core (GS , T ) is
maximal if there is no other ε-quasi σ-periodic k-core (G′S , T )
such that GS ⊂ G′S . We use (ε, σ, k)-MQPCore to represent
maximal ε-quasi σ-periodic k-core, or simply MQPCore if
ε, σ, k are not required.

Definition 5 (ε-quasi σ-periodic k-clique). Given a temporal
graph G, an (ε, σ)-QPS (GS = (VS , ES), T ) represents an ε-
quasi σ-periodic k-clique in G if GS is a clique with |VS | ≥ k.

An ε-quasi σ-periodic k-clique (GS , T ) is maximal if there
is no other ε-quasi σ-periodic k-clique (G′S , T ) such that
GS ⊂ G′S . We use (ε, σ, k)-MQPClique to represent maximal
ε-quasi σ-periodic k-clique, or simply MQPClique if ε, σ, k
are not required.

Example 2. Figure 2 depicts a sample temporal graph with
some periodic patterns. Firstly, if ε = 0, a sample (0, 3, 2)-
MQPCore (Figure 3 (a)) of the temporal graph in Figure 2
can be found. Then, by setting ε = 12%, a more complicated
(12%, 3, 2)-MQPCore can be obtained, as shown in Figure 3
(b). Additionally, the MQPCore of Figure 3 (b) contains a
(12%, 3, 4)-MQPClique induced by v4, v5, v6, v7 with T =
(1, 20, 40), as depicted in Figure 3 (c).

Problem 1. Given a temporal graph G and parameters k, σ, ε,
our goal is to enumerate all (ε, σ, k)-MQPCores.

Hardness analysis. To solve the above problem, the first

solution is to enumerate all k-cores in the de-temporal graph
and test whether these k-cores are maximal and appear in
the temporal graph on a quasi-periodic time sequence. This
solution is impracticable since it requires non-polynomial time
to enumerate all possible k-cores. The second solution is to
mine all quasi-periodic subgraphs and apply traditional algo-
rithms to identify all MQPCores and MQPCliques. In detail,
we mine quasi-periodic sub-sequences in the entire timeline of
temporal graph, and extract the common subgraph of snapshots
in timestamps of each obtained quasi-periodic sub-sequence.
The above process can be completed in polynomial time,
because the time complexity of quasi-periodic sub-sequences
mining is polynomial (as shown in Theorem 5), as well as the
time complexity of maximal k-cores mining in those common
subgraphs. However, mining all quasi-periodic sub-sequences
is still very costly because the number of quasi-periodic sub-
sequences can be much larger than that of periodic sub-
sequences (O((Tmaxε+1)σ−1) times larger in the worst case,
ε, σ are specified by users).
Problem 2. Given a temporal graph G and parameters k, σ, ε,
our goal is to enumerate all (ε, σ, k)-MQPCliques.
Hardness analysis. In contrast to the MQPCore problem,
the MQPClique enumeration problem is NP-hard. Consider a
temporal graph G with identical snapshots at every timestamp,
i.e., SN1 = SN2 = · · · = SNt, and σ = t, ε = 0.
It is clear that each maximal clique in SN1 that is not
smaller than k can form a MQPClique. In this case, the
MQPClique enumeration problem is equivalent to the maximal
clique enumeration problem (for cliques not smaller than k).
Therefore, the MQPClique enumeration problem is NP-hard.

III. QUASI-PERIODIC TIME SEQUENCE MINING

In this section we introduce QPT mining, which is a basic
task in solving all problems in this paper.
(ε, σ)-QPT mining. Given a time sequence T = (t1, t2, ..., tl),
an integer σ (σ ≤ l) and a real number ε (ε ≥ 0), the goal is
to find all (ε, σ)-QPTs T ′ satisfying T ′ ⊆ T .

In this section, at first we do not make any assumptions
about the properties of time sequence T . At the end of this
section, we will discuss the properties of sequences that are
typically encountered in mining quasi-periodic communities.

A. The Basic Method
Algorithm 1 is the basic method to solve the problem of

QPT mining. The idea is simple. At the end of each iteration,
T [i] and each value of T in range [0, i) will generate a new
QPT candidate of length 2 (line 17-19), waiting for forming
longer QPTs with the following values in T . Each QPT
candidate is in form of (T ′,maxD,minD) (line 3), where
T ′ is the QPT and maxD,minD are maximum and minimum
differences respectively between adjacent values in T ′. In each
iteration, Algorithm 1 traverses all candidates in candSet and
checks whether they can form longer QPTs with T [i]. For
a QPT candidate qpt, if T [i] is appended to qpt.T ′, then the
upper limit of difference (tmpLimit) or the biggest difference
(tmpMaxD) may be updated (line 7-8). If tmpMaxD is still
within the upper limit, then a new candidate or a new (ε, σ)-
QPT is generated (line 9-15). We need to abandon candidates
when they are hopeless to form new QPTs (line 16).

The size of candSet is the key factor in analyzing the time
complexity of Algorithm 1. We present the following theorem
first.



Algorithm 1: QPT (T, σ, ε)
Input: A time sequence T . σ and ε
Output: QPT , the set of (ε, σ)-QPTs in T

1 QPT ← ∅; candSet← ∅;
2 for i← 1 to (|T | − 1) do

// generating longer QPT using qpt and T [i]
3 foreach qpt← (T ′,maxD,minD) ∈ candSet do
4 d← T [i]− qpt.T ′[|qpt.T ′| − 1];
5 tmpLimit← (1 + ε)× qpt.minD;
6 tmpMaxD ← qpt.maxD;
7 if d < qpt.minD then tmpLimit← d(1 + ε);
8 if d > qpt.maxD then tmpMaxD ← d;
9 if tmpMaxD ≤ tmpLimit then

// qpt and T [i] can form a longer QPT
10 cand← qpt;
11 cand.minD ← min(qpt.minD, d);
12 cand.maxD ← max(qpt.maxD, d);
13 cand.T ′.append(T [i]);
14 if |cand.T ′| = σ then QPT ← QPT ∪ {cand};
15 else candSet← candSet ∪ {cand};

// qpt can not form longer QPTs with all the
following timestamps in T

16 if d ≥ tmpLimit then candSet← candSet− {qpt};
17 for j ← 0 to (i− 1) do

// generating new QPT candidates using T [j], T [i]
18 cand← ([T [j], T [i]], T [i]− T [j], T [i]− T [j]);
19 candSet← candSet ∪ {cand};

20 return QPT ;

Theorem 1. Given a time sequence T , the total number of
(ε, σ)-QPTs in T is less than T 2

max(Tmaxε+ 1)σ−1.

Due to the space limits, all missing proofs can be found in
the full version of this paper [9].

Theorem 2. The time complexity of Algorithm 1 is
O(T 3

max(Tmaxε+1)σ−2). The space complexity of Algorithm 1
is O(T 2

max(Tmaxε+ 1)σ−1).

B. DAG Oracle Based Method
In the basic method, the size of candidate set increases when

σ or ε increases, and it is traversed in each iteration, leading
to low efficiency. In this subsection we introduce the DAG
oracle based method. The idea is to represent each value in
sequence T as a node in a DAG. For an (ε, σ)-QPT T ′ ⊆ T ,
it can be seen as a path in the DAG, which is composed of
directed edges in the form of (u, v), satisfying u, v ∈ T and
DT ′

min ≤ v − u ≤ DT ′

min(1 + ε).

Definition 6 (DAG oracle). Given a sequence T and ε, the
DAG oracle of T is a set of DAGs, DAG = {DAGd|d ∈ DT },
and DAGd = {(u, v)|u, v ∈ T, d ≤ v − u ≤ d(1 + ε)}.
Definition 7 (Key edge). Given a DAG oracle DAG and
DAGd ∈ DAG, for any edge (u, v) ∈ DAGd, if (v−u) = d,
then (u, v) is a key edge in DAGd.

Example 3. Let T = (1, 10, 21, 35, 40, 49, 69, 75) and ε =
0.2. The DAG oracle of T , denoted by DAG, is illustrated
in Figure 4. As depicted in the left-hand side of Figure 4,
each value in T is treated as a node, resulting in at most
O(|T |2) direct edges. Each direct edge can belong to more
than one DAG. In the middle of Figure 4, (1, 40) is distributed
into DAG34, DAG35 since (40 − 1) is in both [34, 34 ×
1.2], [35, 35 × 1.2]. Moreover, T ′ = (1, 35, 69) is a (0.2, 3)-
QPT in T , and it is a path of length 3 in DAG34.

Theorem 3. Given a sequence T , ε ≥ 0 and the DAG oracle
DAG of T , (1) for any (ε, σ)-QPT T ′ ⊆ T , there must be
a DAGd′ ∈ DAG that T ′ is a path of length σ in DAGd′ ,

Algorithm 2: BuildDAG (T, ε)
Input: A time sequence T . ε
Output: DAG oracle for T , DAG

1 DT ← {b− a|a, b ∈ T, a < b},
DAG ← {DAGd ← empty list|d ∈ DT }; // initializing
DAG oracle

2 for i← 0 to |T | − 2 do
3 for j ← i+ 1 to |T | − 1 do
4 d← T [j]− T [i];

// adding (T [i], T [j]) into DAG
5 for d′ ∈ DT ∧ d′ in [ d

1+ε , d] do
6 if there is no item (i, ∗, ∗) ∈ DAGd′ then

DAGd′ .append((i, j, j));
7 Let (i, l, r) be the item (i, ∗, ∗) in DAGd′ , r ← j;

8 return DAG;

and (2) for any DAGd ∈ DAG, if there exists a path p =
(u1, u2, ..., uσ) of length σ in DAGd, then p is also an (ε, σ)-
QPT in T .

Based on Theorem 3, we can transform QPT mining into
the problem of finding all fixed-length (the number of nodes)
paths in the DAG oracle. In the following, we introduce the
construction of the DAG oracle.

Construct the DAG oracle. Given ε, constructing DAG oracle
for sequence T is very simple. It is clear that all possible
direct edges in T are Ẽ = {(u, v)|u, v ∈ T, u < v}. For each
(u, v) ∈ Ẽ, if (u, v) ∈ DAGd, then v−u

1+ε ≤ d ≤ v − u, which
means we should add (u, v) into all DAGd where d is in
[v−u1+ε , v− u]. Algorithm 2 presents the procedure to construct
DAG oracle.

Algorithm 2 first computes DT and initiates DAG in line 1.
Then, the algorithm traverses all possible edges in line 2-3.
For each edge (T [i], T [j]), the algorithm adds it into DAGd′
where d′ ≤ T [j] − T [i] ≤ d′(1 + ε) (line 5-7). Note that
we do not need to store DAGs in DAG in the regular way.
Instead, for each node T [i] in DAGd′ , since all its neighbors
T [jl], T [jl+1], ..., T [jr] must be in a continuous interval of T ,
we only need to store all its adjacent edges in form of (i, jl, jr)
as in line 6-7. DAGs in DAG oracle are compact because
T [jl]−T [i] and T [jr]−T [i] are both in range of [d′, d′(1+ε)]
and ε is usually smaller than 1.

Theorem 4. The time complexity of Algorithm 2 is
O(|T |2(Tmaxεε+1 + 1)). The space complexity of Algorithm 2 is
O(|T |Tmax).

Mining QPT on DAG oracle. As we mentioned before, QPT
mining is equivalent to finding all fixed-length paths in DAG
oracle. In this paper we use Depth-First-Search (DFS) to find
all such paths. There are some details to be considered.
Avoid redundant QPTs. The same path may be found in
more than one DAGs of DAG oracle. For example, in Figure 4,
(1, 40, 75) is in both DAG34 and DAG35. To avoid such
redundant path, in each DAGd of DAG oracle we only
search fixed-length paths containing key edges (Definition 7)
of DAGd. For example, in DAG34 of Figure 4, we only
search paths containing (1, 35) and (35, 69). The reason is
that each QPT T ′ can be found in DAGDT ′

min
, as in the proof

of Theorem 3, and paths containing no key edge will be found
in other DAGs.

In a DAG, a path may contain 2 or more key edges, so
it is necessary to delete any key edge after all valid paths
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Fig. 4. Sample DAG oracle of T = (1, 10, 21, 35, 40, 49, 69, 75). Bold edges in DAG oracle are key edges. Values in auxiliary array maxLen are shown
around nodes in DAG oracle

containing it are found. This avoids redundant paths when
processing other key edges. For instance, in Figure 4, we
delete key edge (1, 35) in DAG34 after discovering the path
(1, 35, 69). This ensures that (1, 35, 69) is not rediscovered
when searching for all paths containing key edge (35, 69).
It is very simple to delete a key edge. For example, to delete
(1, 35) in DAG34 of Figure 4 we only need to modify (0, 3, 4)
stored in DAG34 to (0, 4, 4).
Heuristic DFS. In the search for valid paths, we employ a
heuristic depth-first search (DFS) with an auxiliary array called
maxLen, which records the maximum length of paths from
each node. For instance, the value in maxLen for node 1 of
DAG34 in Figure 4 is shown at the top of node 1. Utilizing
maxLen, if there is no path of the required length starting
from node u, then the successors of u need not be visited.
Update auxiliary array. After deleting the key edge (u, v)
from DAGd, we need to update the value of maxLen[u]
to reflect the new maximum length of paths starting from u.
Specifically, we set m = max

(u,v′)∈DAGd,v′ 6=v
maxLen[v′] + 1

(m − 1 is the maximum length of paths starting from direct
successors of u) and update maxLen[u] to m if m <
maxLen[u]. We also need to check and update maxLen[u′]
(u′ is some of ancestors of u, not only parent nodes) in
a similar way. Note that it is unnecessary to check all
ancestors of u. Suppose u′ is an ancestor of u, let m =

max
(u′,v′)∈DAGd

maxLen[v′] + 1 and σ be the required length

of valid paths, if m = σ − 1, then all ancestors of u′ do
not need to be updated since the maximum length of paths
starting from those nodes is at least σ, and it does not matter
whether these values are σ or greater. To efficiently perform
these updates, we use a Breadth-First-Search (BFS) method.
Algorithm implementation. Algorithm 3 presents the detailed
process to mine QPT on DAG oracle. As in line 2, Algorithm 3
traverses each DAG (DAGd) to search for valid paths. In
line 3, Algorithm 3 creates DAG, which is obtained by
reversing all directed edges in DAG. Tuples in DAG are
still in form of (i, l, r). DAG is essential because we also
need to perform a reverse search starting from the starting
node of key edges. In line 1, we create two auxiliary arrays
maxLen,maxLen to record the maximum length of paths
starting from each node in DAG and DAG respectively. In
line 5-8, Algorithm 3 collects all key edges and initializes
maxLen,maxLen (by traversing DAG and DAG only
once).

Algorithm 3 traverses each key edge edge and since edge
can appear at any position in a valid path, Algorithm 3
traverses each possible position in line 12 by enumerating pre,

which is the length of the first part of valid paths separated by
edge[0] (not included). In line 16-17, Algorithm 3 searches
both parts of valid paths in two directions. For example in
line 16, we search the first part of valid paths of required length
pre+ 1 backwards with the help of auxiliary array maxLen.
In hDFS, recursive calls occur only if there exists a path of the
required length starting from node i in line 27. In line 18, we
simply put parts of valid paths in preAns, postAns together
in pairs to get the final set of results QPT .

After enumerating each key edge, we delete it in both DAG
and DAG to avoid redundant results as in line 31-32 of
Algorithm 3. After that, auxiliary arrays maxLen,maxLen
should be updated. From Algorithm 2 we know that tuples
(i, l, r) in DAG are ordered by i, consequently key edges
edge in keyEdge are ordered by edge[0]. Deleting a key
edge will not change the maximum length of paths in DAG
starting from nodes of key edges which will be traversed
later. As a result, maxLen does not need to be updated.
DeleteKeyEdge uses a BFS way to update maxLen. The first
node to be updated is the end node edge[1] (line 33). The new
value of maxLen[edge[1]] depends on all direct successors
of edge[1] in DAG (or parent nodes in DAG, line 36-37). If
maxLen[edge[1]] should be updated (decreased, line 38), then
all direct successors of edge[1] in DAG should be added into
Q, waiting for similar treatment to edge[1] (line 41-42) unless
longest+1 ≥ σ−1 (line 40). If longest+1 ≥ σ−1, then the
maxLen values of all successors of edge[1] (or curNode in
DeleteKeyEdge) in DAG are at least σ. In this case, it does
not matter whether these values are σ or greater.

Theorem 5. Both the time and space complexity of Algo-
rithm 3 are O(T 2

max(Tmaxε+ 1)σ−1).

C. Discussion
From the analysis presented above, it is evident that the

DAG oracle based method is more efficient compared to
the basic method. This is due to the reduction of the T 3

max
factor to T 2

max. In the worst case, the time sequence T can
closely resemble a natural number sequence, as interactions
can occur at every time unit in real-world scenarios. In such
cases, the actual running time of Algorithm 1 and Algorithm 3
may approach their theoretical time complexity. However, this
work does not directly mine QPTs over the entire timeline
of temporal networks. Instead, it focuses on time sequences
associated with vertices. Moreover, at each timestamp of these
time sequences, the degree of the corresponding vertices must
exceed a specific threshold according to the definitions of
MQPCore and MQPClique (see Definition 8). Consequently,
these time sequences are unlikely to be as long and dense as



Algorithm 3: QPT+ (T, σ, ε,DAG)
Input: A sequence T . σ and ε. DAG oracle of T , DAG
Output: QPT , the set of (ε, σ)-QPTs in T ,

1 maxLen← {}; maxLen← {}; QPT ← ∅;
2 foreach DAGd ∈ DAG do
3 DAG← DAGd; DAG← DAG.reverse(); // a reversed

DAG
4 keyEdge← [];
5 for (i, l, r) ∈ DAG do
6 if T [l]− T [i] = d then keyEdge.append((i, l));

7 if |keyEdge| = 0 then continue;
8 Initialize maxLen,maxLen;
9 for edge ∈ keyEdge do

10 tail← maxLen[edge[1]]− 1; head← 0;
11 if tail < σ − 2 then head← σ − 2− tail;

// enumerating the possible length of prefix
separated by edge[0]

12 for pre← head to (σ − 2) do
13 post← σ − 2− pre; // the length of postfix

separated by edge[1]
14 if maxLen[edge[0]]− 1 < pre then break;
15 preAns← []; postAns← []; curPath← [];

// searching for valid paths from two
directions

16 hDFS (edge[0], pre+
1, T,DAG,maxLen, curPath, preAns);

17 hDFS (edge[1], post+
1, T,DAG,maxLen, curPath, postAns);

18 CombineAns (preAns, postAns,QPT );

19 DeleteKeyEdge (edge,DAG,DAG,maxLen,maxLen);

20 return QPT ;

// hDFS is used to mine paths of required length from
start in DAG

21 Procedure hDFS
(start, leftLen, T,DAG,maxLen, curPath, partAns)

22 curPath.append(T [start]); Let (start, l, r) be (start, ∗, ∗) in
DAG;

23 if leftLen = 1 then partAns.append(curPath.copy());
24 else
25 leftLen← leftLen− 1;
26 for i← l to r do
27 if maxLen[i] ≥ leftLen then
28 hDFS

(i, leftLen, T,DAG,maxLen, curPath, partAns);

29 curPath.pop();

30 Procedure DeleteKeyEdge (edge,DAG,DAG,maxLen,maxLen)
31 Let (edge[0], li, ri) be (edge[0], ∗, ∗) in DAG. Let (edge[1], lj , rj) be

(edge[1], ∗, ∗) in DAG;
32 li ← li + 1, rj ← rj − 1; // delete the key edge

// update maxLen
33 Q← an empty queue; Q.push(edge[1]); // Q stores all nodes

waiting to be updated
34 while Q.empty() = false do
35 curNode← Q.front(); Q.pop();
36 Let (curNode, lrev, rrev) be (curNode, ∗, ∗) in DAG;
37 longest← max

k=lrev,...,rrev
maxLen[k];

38 if maxLen[curNode]! = longest+ 1 then
39 maxLen[curNode]← longest+ 1;
40 if longest+ 1 < σ − 1 ∧maxLen[curNode] > 1 then
41 Let (curNode, l, r) be (curNode, ∗, ∗) in DAG;
42 for i← l to r do Q.push(i);

the overall timeline of the temporal networks. Further details
will be provided in the next section.

IV. MINING QUASI-PERIODIC COMMUNITIES

In this section, we present a framework for mining MQP-
Cores and MQPCliques in a temporal graph. The overall
process of this framework involves traversing all vertices, with
two stages of tasks for each vertex. In the first stage, the
framework determines whether the vertex has the potential
to be included in a MQPCore or MQPClique. In the second
stage, if the vertex is eligible for inclusion in a MQPCore

or MQPClique, then the framework tries to compute all
MQPCores or MQPCliques containing that vertex. The process
then moves on to the next vertex. Two pruning rules are
employed in the above process.

A. The First Stage
We first introduce how to determine whether a vertex has

the potential to be included in a MQPCore or MQPClique.
Considering that the degree of each vertex in MQPCore or
MQPClique must exceed a threshold value, we present the
following definition.

Definition 8 (ε-quasi (σ, k)-periodic vertex ((ε, σ, k)-QPV)).
Given a temporal graph G = (V, E) and its de-temporal graph
G = (V,E), for a vertex u ∈ V , tk(u) is the longest timestamp
sequence where ∀t ∈ tk(u), degSNt(u) ≥ k. u is an ε-quasi
(σ, k)-periodic vertex if there exists an (ε, σ)-QPT in tk(u).

All (ε, σ)-QPTs in tk(u) form an ε-quasi (σ, k)-periodic
support time sequence set of u. For convenience, we let
(ε, σ, k)-QPTSET (or QPTSET if no specified parameters)
be the ε-quasi (σ, k)-periodic support time sequence set with
no specified vertex, and (ε, σ, k)-QPTSETu be QPTSET of
vertex u (or QPTSETu).

Clearly, if a vertex u is not an (ε, σ, k)-QPV (QPTSETu =
∅), then it is impossible to be contained in (ε, σ, k)-MQPCores
or (ε, σ, k + 1)-MQPCliques. Such vertices can be directly
deleted.

Example 4. In temporal graph of Figure 2, let ε = 12%, σ =
3, k = 2, v2 is not an (ε, σ, k)-QPV, since tk(v2) = (20)
and QPTSETv2 = ∅. All other vertices are (ε, σ, k)-QPV,
for example, tk(v1) = (10, 20, 30) and QPTSETv1 =
{(10, 20, 30)}.

B. The Second Stage (MQPCore Enumeration)
In this section, we present the computation method for

MQPCores containing a specific QPV, which is one of the ob-
jectives of the second stage. Given a QPV u, it can be observed
that any MQPCore that contains u must be a subgraph of a
larger QPS, which is a local quasi-periodic subgraph and also
contains u. Next we define quasi-periodic connected subgraph,
the local quasi-periodic subgraph especially for MQPCore
enumeration.

Definition 9 (ε-quasi σ-periodic connected subgraph
((ε, σ)-QPCS)). Given a temporal graph G = (V, E) and
ε, σ, an (ε, σ)-QPS (GS = (VS , ES), T ) is an ε-quasi
σ-periodic connected subgraph if GS is a maximal connected
subgraph such that no other (ε, σ)-QPS (G′S , T ) satisfies
GS ⊂ G′S and G′S is connected.

Given a temporal graph G = (V, E) and parameters ε, σ, k,
an (ε, σ, k)-QPV u in G is contained by a QPCS (GS =
(VS , ES), T ) only if u ∈ VS and T ∈ (ε, σ, k)-QPTSETu.
We call such QPCS as (ε, σ)-QPCSu or QPCSu.

Example 5. Consider the sample temporal graph in Figure 5
(a) and ε = 12%, σ = 3, k = 2. Figure 5 (b) shows an example
of QPCSv3 , since v3 is an (ε, σ, k)-QPV, (20, 30, 40) ∈
QPTSETv3 and v3 is in GS , which is a maximal connected
subgraph under the constraint of time sequence (20, 30, 40).

Theorem 6. Given a temporal graph G = (V, E) and ε, σ, k,
all MQPCores can be obtained in QPCSu, u ∈ V .



v5v3 v4

v6 v7

v1 v210,20

(a) G, the sample temporal graph

v5v3 v4

v6 v7

(b) (GS , (20, 30, 40)),
an example of QPCSv3

v3 v4

v6 v7

(c) k-core in GS

Fig. 5. An example of (ε, σ)-QPCSv3 . ε = 12%, σ = 3, k =
2, (20, 30, 40) ∈ QPTSETv3 . Labels of edges with timestamps
(1, 10, 20, 30, 40) are omitted in (a)

According to Theorem 6, the direct idea of MQPCore
mining is to extract k-cores from all possible QPCSu in
traversing each vertex u. In detail, with QPTSETu computed
in the first stage (Section IV-A), we compute QPCSu and
its k-cores for each qpt ∈ QPTSETu. A QPCSu can
be computed by Breadth-First-Search starting from u. For
example, GS in Example 5 can be obtained by Breadth-First-
Search starting from v3. In Example 5 we can see that by
computing k-core in GS , a MQPCore (C, (20, 30, 40)) can
be obtained where C is shown in Figure 5 (c). Note that
(GS , (20, 30, 40)) can also be QPCSv5 but v5 is not contained
in (C, (20, 30, 40)) above. It does not affect the correctness of
our framework to mine all MQPCores.

However, above solution involves numerous redundant com-
putations. For example, for a vertex u, if QPTSETu 6= ∅
and all possible QPCSu and MQPCores in those QPCS
are computed, then all remaining MQPCores in the temporal
network do not contain u any more. In this case, u can be
deleted, and for remaining vertices the cost of computing
QPTSET and QPCS can be reduced. As in Figure 5 (a),
degSN10(v3) ≥ 2, but degSN10(v3) < 2 after v1 is deleted. So
that |tk(v3)|, QPTSETv3 will be smaller and fewer QPCSv3
will be generated. As a result, we develop the following
pruning rule.

Pruning rule 1. Consider the temporal graph G = (V, E),
we traverse vertices u ∈ V with small degree first and delete
them after both stages of computation have been completed. In
detail, we sort all vertices by their degree in the de-temporal
graph first, since vertex u with small degree may have shorter
tk(u), smaller QPTSETu and fewer QPCSu. Deleting each
vertex that has been traversed may cause its neighbors v to
have smaller degree, shorter tk(v), smaller QPTSETv , and
fewer QPCSv .

Example 6. Figure 6 shows two cases when v3 is traversed
with and without pruning rule 1. At first, v2 is deleted directly
in both Figure 6 (a) and (b) since QPTSETv2 = ∅ as
in Figure 5 (a). In Figure 6 (a), no more vertices can be
deleted since every remaining vertex has nonempty QPTSET.
As a result, in Figure 6 (a) tk(v3) = (1, 10, 20, 30, 40),
|QPTSETv3 | = 4 and there are 4 QPCSv3 . However, in
Figure 6 (b) we delete vertices having been traversed, so that
tk(v3) is shorter and only 2 QPCSv3 are produced. MQPCore
in the first QPCSv3 of Figure 6 (a) can still be computed in
QPCSv7 . MQPCore in the second QPCSv3 of Figure 6 (a)
has already been computed after v1 was traversed.

Applying pruning rule 1 cannot eliminate all redundant
computations. As in Example 6, when v7 is being traversed,
since v3 has been deleted and (20, 30, 40) ∈ QPTSETv7 , a
QPCSv7 (G′S , (20, 30, 40)) will be generated where G′S is
composed of only 4 edges: (v4, v6), (v4, v7), (v6, v7), (v4, v5).
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(a) Without pruning rule 1
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(b) With pruning rule 1. Vertices are sorted as v2, v1, v3, v7, v6, v4, v5
by their degree

Fig. 6. MQPCore enumeration when v3 is traversed. ε = 12%, σ = 3, k =
2, T = (1, 10, 20, 30, 40)

Algorithm 4: MQPCore (G, σ, k, ε)
Input: Temporal graph G, σ, k and ε
Output: M, the set of all MQPCores in G

1 Let G be the de-temporal graph of G;
2 Gc = (Vc, Ec)← k-core of G;
3 Initialize degGc (u) for u ∈ Vc;
4 M← ∅, X ← ∅, L← ∅;
5 for u ∈ Vc in ascending order of degGc (u) do
6 if u ∈ X then continue;
7 QPTSETu ← ComputeQPTSET (u, k, σ, ε, Gc,G, X);
8 for qpt ∈ QPTSETu do

// pruning rule 2
9 if (qpt, u) ∈ L then continue;

10 Gu = (Vu, Eu)← maximal connected subgraph of Gc
containing u and ∀(u′, v′) ∈ Eu, qpt ⊆
SupTG((u′, v′)) ∧ ∀u′ ∈ Vu, u′ /∈ X ∧ (qpt, u′) /∈ L;

11 L← L ∪ {(qpt, u′)|u′ ∈ Vu};
12 SG← sets of connected k-cores in Gu;
13 M←M∪ {(C′, qpt)|C′ ∈ SG};

// pruning rule 1
14 X ← X ∪ {u};

// update degree of vertices
15 Q← an empty queue, Q.push(u);
16 while Q.empty() = false do
17 v ← Q.front(), Q.pop();
18 for w ∈ NGc (v) do
19 if w ∈ X then continue;
20 degGc (w)← degGc (w)− 1;
21 if degGc (w) < k then
22 X ← X ∪ {w}, Q.push(w);

23 return M;

MQPCore obtained in (G′S , (20, 30, 40)) is included in former
MQPCores obtained in traversing v3. To avoid the above
redundant computations, our solution is to record vertices
for all QPCS being computed, as described in the following
pruning rule.

Pruning rule 2. For each QPCS (GS = (VS , ES), T ) being
computed, we record all tuples in form of (T, u), u ∈ VS . In
traversing each vertex v of the temporal graph, we skip all
T ′ ∈ QPTSETv where (T ′, v) has been recorded.

Applying pruning rule 1 and 2 does not affect the integrity
of the final results. This will be demonstrated in Theorem 7.

Algorithm 4 is the algorithm to mine all MQPCores based
on our framework with the above two pruning rules. At first,
Algorithm 4 prepares the de-temporal graph and its k-core
to prune the search space (line 1-2). Algorithm 4 traverses
all vertices in Vc with ascending order of their initial degree
(line 5). In the first stage (line 7) of traversing each vertex,
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Fig. 7. Cases of traversing v3 with and without pruning rule 1 in MQPClique
enumeration. ε = 12%, σ = 3, k = 3

QPTSETu is computed in the pruned temporal graph (due to
pruning rule 1) based on algorithms introduced in Section III.
In the second stage, for each qpt (line 8), the algorithm
computes QPCSu (line 10) unless (qpt, u) has been recorded
(line 9, pruning rule 2). Then all vertices of QPCSu are
recorded (line 11) and k-cores in QPCSu are computed
(line 12). All new MQPCores are added into M (line 13).
At last, the algorithm deletes u and vertices which can not
retain degree not less than k (line 14-22, pruning rule 1).

Theorem 7. Given a temporal graph G and ε, σ, k, Algo-
rithm 4 correctly enumerates all MQPCores.

Theorem 8. Suppose ComputeQPTSET in Algorithm 4 is
implemented by QPT+, the time and space complexity of
Algorithm 4 are both O(T 2

max(Tmaxε + 1)σ−1(|V | + |E|)).
V,E are sets of vertices and edges in the de-temporal graph
G. T is the set of timestamps in G.

C. The Second Stage (MQPClique Enumeration)
MQPClique enumeration is another objective of the second

stage in traversing vertices. We first define a simpler local
quasi-periodic subgraph for MQPClique enumeration: quasi-
periodic neighbor subgraph.

Definition 10 (ε-quasi σ-periodic neighbor subgraph
((ε, σ)-QPNS)). Given a temporal graph G = (V, E),
its de-temporal graph G and ε, σ, k, for an
(ε, σ, k)-QPV u ∈ V and each qpt ∈ (ε, σ, k)-
QPTSETu, an (ε, σ)-QPS (GS = (VS , ES), qpt)
is an ε-quasi σ-periodic neighbor subgraph of u if
VS = {v|v ∈ NG(u), qpt ⊆ SupTG((u, v))} ∪ {u} and
ES = {(u′, v′)|u′, v′ ∈ VS , qpt ⊆ SupTG((u′, v′))}.
(ε, σ)-QPNSu or QPNSu represents a QPNS of (ε, σ, k)-

QPV u. Examples of QPNS can be found in Figure 7.

Theorem 9. Given a temporal graph G = (V, E) and ε, σ, k,
all MQPCliques can be obtained in QPNSu, u ∈ V .

The proof of Theorem 9 is similar to the proof of The-
orem 6. With Theorem 9, we can use the classical Bron-
Kerbosch algorithm [10] with pivot technique to compute
all MQPCliques in those QPNS. Similarly, pruning rule 1
can be applied to MQPClique enumeration to achieve shorter
tk(u), smaller QPTSET and fewer QPNS, which are shown
in Figure 7. pruning rule 2 is not used in MQPClique
enumeration since there are already similar techniques to
prevent redundant computations in Bron-Kerbosch algorithm
with pivot technique.

Based on a similar framework in Algorithm 4, we di-
rectly present Algorithm 5, the algorithm that enumerates
all MQPCliques in a temporal graph based on the classical
Bron-Kerbosch algorithm with pivot technique. The main

Algorithm 5: MQPClique (G, σ, k, ε)
Input: Temporal graph G, σ, k and ε
Output: M, the set of all MQPCliques in G

1 Let G be the de-temporal graph of G;
2 Gc = (Vc, Ec)← (k − 1)-core of G; // limit for degree is

k − 1
3 Initialize degGc (u) for u ∈ Vc;
4 M← ∅, X ← ∅;
5 for u ∈ Vc in ascending order of degGc (u) do
6 if u ∈ X then continue;
7 QPTSETu ← ComputeQPTSET (u, k − 1, σ, ε, Gc,G, X);
8 for qpt ∈ QPTSETu do

// compute QPNS and MQPClique
9 P ← ∅, R← ∅, X̃ ← ∅;

10 R← R ∪ {u};
11 for v ∈ NGc (u) do
12 if qpt ⊆ SupTG((u, v)) then
13 if v ∈ X then X̃ ← X̃ ∪ {v} ;
14 else P ← P ∪ {v} ;

15 BKPivot (P,R, X̃,M, k, qpt,G, Gc);

// pruning rule 1
16 X ← X ∪ {u};
17 Q← an empty queue, Q.push(u);
18 while Q.empty() = false do
19 v ← Q.front(), Q.pop();
20 for w ∈ NGc (v) do
21 if w ∈ X then continue;
22 degGc (w)← degGc (w)− 1;
23 if degGc (w) < k − 1 then
24 X ← X ∪ {w}, Q.push(w);

25 return M;

26 Procedure BKPivot (P,R,X,M, k, qpt,G, G)
27 if |P |+ |R| < k then return;
28 if P = ∅ ∧X = ∅ then M←M∪ {(R, qpt)}, return;
29 u′ ← arg max

u∈P∪X
|P ∩ {v|v ∈ NG(u), qpt ⊆ SupTG((u, v))}|;

30 for u ∈ P − {v|v ∈ NG(u′), qpt ⊆ SupTG((u′, v))} do
31 P ′ ← P ∩ {v|v ∈ NG(u), qpt ⊆ SupTG((u, v))};
32 X′ ← X ∩ {v|v ∈ NG(u), qpt ⊆ SupTG((u, v))};
33 R′ ← R ∪ {u};
34 BKPivot (P ′, R′, X′,M, k, qpt,G, G);
35 P ← P − {u}, X ← X ∪ {u};

differences between Algorithm 5 and Algorithm 4 lie in
line 9-15 and the BKPivot procedure. In line 9-15, the
algorithm searches vertices of QPNSu among all neighbors
of u (line 11-14) and computes maximal cliques in QPNSu
(line 15). In BKPivot procedure, only edges in QPNSu will
be visited, as shown in line 29-32 (e.g., qpt ⊆ SupTG((u, v))
in line 29).

Theorem 10. Given a temporal graph G and ε, σ, k, Algo-
rithm 5 correctly enumerates all MQPCliques.

Theorem 11. Suppose ComputeQPTSET in Algorithm 5 is
implemented by QPT+, the time complexity of Algorithm 5 is
O(T 2

max(Tmaxε + 1)σ−1|V |3|V |/3). V,E are sets of vertices
and edges in the de-temporal graph G. T is the set of
timestamps in G.

Based on Moon et al. [11], any n-vertex graph has at most
3n/3 maximal cliques, we can easily derive the following
theorem.

Theorem 12. Given a temporal graph G, σ, k, ε and its de-
temporal graph G = (V,E), the number of MQPCliques in G
is at most T 2

max(Tmaxε+ 1)σ−13|V |/3.

V. EXPERIMENTS

In this section we conduct extensive experiments to evaluate
the effectiveness and efficiency of algorithms for QPT mining,



TABLE I
DATASETS-TEMPORAL GRAPHS

Datasets |V | E |T | Time scale

Hospital 75 19,274 3,567 minute
LKML 26,885 547,814 2,922 day
Enron 86,978 912,762 1,235 day
DBLP 1,207,754 8,072,560 80 year
IMDB 3,497,300 37,096,631 144 year

MQPCore enumeration and MQPClique enumeration.

Datasets. In this work we use five real-world temporal graphs
as the datasets. Table I shows the basic information of the five
real-world temporal graphs (T represents the set of timestamps
in all edges of each dataset). Hospital [12] is downloaded
from http://www.sociopatterns.org/datasets/, LKML and Enron
are downloaded from http://konect.cc/. DBLP [13] is extracted
from dblp computer science bibliography data which is down-
loaded in September, 2021. IMDB [13] is extracted from the
Internet Movie Database (IMDB) downloaded in November,
2021.

Algorithms. For QPT mining, we implement two algorithms:
QPT and QPT+. QPT is the basic method (Algorithm 1) and
QPT+ is the DAG oracle based method (Algorithm 3).

For MQPCore enumeration, we first present two baseline
method, TsetCO and TsetCO+. In TsetCO, we first mine
all QPT in the entire timestamp set of temporal networks
using QPT. Then for each QPT, we extract the common
snapshot in timestamps of the QPT (i.e., QPS) and perform
core decomposition. TsetCO+ is similar to TsetCO but uses
QPT+ to mine all QPT.

We also modify framework for (strict) periodic clique
mining proposed in [6] as a comparison. In the modified
framework, the first step is computing QPTSET using QPT
or QPT+ for all vertices, then all QPS are computed based
on QPT in those QPTSET. Then algorithm for community
mining is invoked. MQPCO-B and MQPCO-B+ represent the
modified framework with QPT and QPT+ respectively.
MQPCO-E and MQPCO-E+ represent our framework (Al-

gorithm 4) where ComputeQPTSET is implemented by QPT
and QPT+ respectively.

For MQPClique enumeration, we use the same frameworks
above. Six similar algorithms are implemented: TsetCL and
TsetCL+ based on the baseline method; MQPCL-B and
MQPCL-B+ based on the modified framework; MQPCL-E
and MQPCL-E+ based on our framework (Algorithm 5).

Parameters. There are three parameters in this work, σ, k, ε.
The default value of σ is 6. For k, the default value is 3
(for MQPClique enumeration, we set the default value to
4 to keep the same degree limit). For ε, we set 4 levels:
5%, 10%, 15%, 20%, with default value 5%.

A. Effectiveness Evaluation

Case study on DBLP. We compare the results of clique,
periodic clique and quasi-periodic clique to evaluate the
effectiveness of the community models. Prof. José Meseguer
is with UIUC, and his research fields include computer
theory, software engineering, computer architecture and so on.
Figure 8 (a) shows the clique containing Prof. Meseguer in
the de-temporal graph of DBLP. As can be seen, Figure 8 (a)
contains many researchers who do not co-authored with Prof.
Meseguer regularly and researchers who are in other research
areas such as network security (Catherine A. Meadows, Ralf
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(a) The clique in the de-
temporal graph
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Fig. 8. Case study in DBLP (Communities of Prof. José Meseguer).
Researchers of different fields are in different colors: computer theory (blue),
software engineering (green), computer architecture (red), network security
(purple)

Sasse) and computer architecture (Zhiqiang Liu). This is
because that the clique model do not consider the temporal
information, so once a researcher has a short-term connection
with Prof. Meseguer, he will be added into the community.
Figure 8 (b) is the periodic clique, it shows a small close
community with periodic co-authorship (years 2009-2016)
of three researchers. Interestingly, according to dblp.org/pid/
m/JoseMeseguer.html, the three researchers (Narciso Marti-
Oliet, Francisco Duran, Steven Eker) are the 2nd-4th most
collaborators with Prof. Meseguer. Figure 8 (c) shows the
quasi-periodic clique with k = 5, σ = 3, ε = 20%. In this
community, we can find a new member Carolyn L. Talcott,
who is the 5th most collaborator with Prof. Meseguer. As
seen in Figure 8 (d), the MQPClique with ε = 50% contains
a new researcher, Manuel Clavel, which is the 6th most
collaborator with Prof. Meseguer. Therefore, we find that
(i) the periodic clique and quasi-periodic clique can find more
accurate periodic communities than the clique model; (ii) the
quasi-periodic clique can find larger actual but not strictly
periodical communities than the periodic clique model. In
conclude, our proposed MQPClique model is more effective
than the other models.

Quantification. In the preceding case study, we provide
examples to demonstrate the effectiveness of MQPClique to
find larger actual but not strictly periodical communities for a
specific vertex (a researcher in DBLP). Here we quantitatively
assess the aforementioned effectiveness by computing the
proportion of those vertices (the vertices for which the size of
the maximum community containing the vertex has increased
with the growth of ε) in the initial periodic cliques. In detail,
consider a graph G = (V,E) and given σ, k, ε, let Vε be the set
of all vertices in MQPCliques in G, and maxε(u), u ∈ Vε be
the size of the maximum MQPClique containing u. Suppose
V incε is the set of vertices for which the size of the maximum
MQPClique containing the vertex has increased, i.e., V incε ⊆
V0 ∩ Vε,∀u ∈ V incε ,maxε(u) > max0(u), Table II shows
the proportion of vertices in V incε relative to those in V0
(|V incε |/|V0|) with different ε and k = 4, σ = 3. We can
see that in DBLP, the value of |V incε |/|V0| increases at a
slow rate with the growth of ε. The reason is that DBLP
is a dataset with coarse-grained timestamp unit (year), so
that discovering quasi-periodic communities in DBLP is more



TABLE II
QUANTIFICATION OF EFFECTIVENESS-THE VALUE OF |V incε |/|V0| WITH

DIFFERENT ε. k = 4, σ = 3

ε : 5% ε : 10% ε : 15% ε : 20% ε : 50%
DBLP 0% 0% < 0.01% < 0.1% 1.1%
Enron 1.7% 7.3% 10.6% 13.9% 18.4%

difficult especially under small ε (the specific reasons will
be explained in Exp-5). However, V0 in DBLP is sufficiently
large, so we can still find examples for conducting a case study.
In Enron, we can observe a noticeable increase in |V incε |/|V0|
with the growth of ε, indicating that by mining MQPCliques,
an increasing number of vertices in the initial periodic cliques
can be found in larger actual but not strictly periodical
communities, which further demonstrates the effectiveness of
the MQPClique model.

B. Efficiency Evaluation
In this subsection we evaluate the efficiency of algorithms

for QPT mining, MQPCore and MQPClique enumeration.

Exp-1: Efficiency of algorithms for QPT mining. Table III
shows the running time of QPT and QPT+ on two time
sequences of different length selected from tk(u)s in LKML
with varying parameters. As we can see in Table III, QPT+
is more efficient than QPT especially when σ gets larger. The
reason is that when σ gets larger, QPT has to maintain and
traverse larger candidate set and QPT+ can still be accelerated
by auxiliary arrays. More interestingly, the running time of
QPT+ decreases when σ continues to increase, which is
because the number of (ε, σ)-QPT has to decrease when σ
continues to increase and the auxiliary arrays in QPT+ guide
the algorithm to only access the correct path. From another
perspective we can see that the running time increases when ε
gets larger, and the reason is that larger ε causes more QPT in a
sequence. When |T | = 200, both QPT and QPT+ can not end
in an hour if ε = 20%, σ ≥ 8, which is because the number
of QPT become extremely large in these cases. As a result,
it is important to keep a smaller |T | (or |tk(u)|) in following
algorithms to enumerate MQPCores and MQPCliques, which
is exactly what the pruning rule 1 does as we introduced in
Section IV-B.

Table IV shows the time used in building DAG oracle
(Algorithm 2) for QPT+. As we analyzed in Theorem 4, more
time is needed for larger ε or |T | in building DAG oracle.
However, as ε or |T | increases, the rate of increase in time
used for building DAG oracle is much smaller than that of
QPT+ in most cases. This proves that building DAG oracle
is not a performance bottleneck in most cases.

Exp-2: Memory usage of the algotirhms for QPT mining.
Table V shows the memory usage of QPT and QPT+. We
extract data that σ = 6, σ = 10 and ε = 5%, ε = 15%.
We can see that increasing ε both two algorithms take more
memory, because larger ε leads to larger candidate set in QPT,
larger DAG oracle in QPT+ and more QPT in T . However,
the memory usage of the two algorithms does not correlate
strongly with σ, which is mainly because the number of QPT
in T does not always increase with σ. In most cases especially
when |T | = 200, QPT+ takes less space because the DAGs
in DAG oracle are compact structures and QPT+ does not
need to maintain a large candidate set.

Exp-3: Efficiency of algorithms for MQPCore and MQP-
Clique enumeration on all datasets with default param-
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Fig. 9. Running time of algorithms for MQPCore enumeration and
MQPClique enumeration with default parameters

eters. In this experiment we first use the default parame-
ters to evaluate the efficiency of algorithms for MQPCore
and MQPClique enumeration on all datasets. Figure 9 (a)
shows the running time of the 6 algorithms for MQPCore
enumeration. We can see that TsetCO and TsetCO+ can
not be applied to dataset like Hospital, LKML and Enron,
because there are much more timestamps in these three
temporal networks, and it is inefficient to mine QPT di-
rectly in timestamp set of these three datasets. In DBLP,
IMDB and Hospital, MQPCO-E and MQPCO-E+ has no
advantage over MQPCO-B and MQPCO-B+ respectively,
but in LKML and Enron, MQPCO-E and MQPCO-E+ are
more than 10 times faster than MQPCO-B and MQPCO-B+
respectively. The reason is that LKML and Enron have much
more timestamps than DBLP and IMDB, as well as larger
tk(u), QPTSET. In this case, our pruning rules especially the
pruning rule 1 can help to avoid numerous computations. For
example, the length of the top-5 longest tk(u)s in Enron using
MQPCO-B and MQPCO-B+ are 448, 435, 362, 339, 295,
while such data using MQPCO-E and MQPCO-E+ are 219,
204, 150, 150, 149. The size of the top-5 largest QPTSET
in Enron using MQPCO-B and MQPCO-B+ are 2139157,
2132108, 794811, 310340, 227683, while such data using
MQPCO-E and MQPCO-E+ are 42355, 29345, 4921, 3731,
2561. Such differences in LKML is even more dramatic, so
that MQPCO-B and MQPCO-B+ can not end in an hour. We
can also find that algorithms integrated with QPT+ works
better than algorithms integrated with QPT in LKML and
Enron. This is because most tk(u)s in DBLP and IMDB are
much shorter than 100, and in these cases QPT works better
than QPT+ slightly due to the preparation for DAG oracle.
The results in MQPClique enuemration (Figure 9 (b)) and the
reasons are similar.

Exp-4: Efficiency of algorithms for MQPCore and MQP-
Clique enumeration with varying k, σ. We then evaluate
the efficiency of algorithms for MQPCore and MQPClique
enumeration with varying k, σ. Figure 10 (a) and (b) show
the running time of algorithms for MQPCore enumeration on
Enron with varying k and σ. We can see that TsetCO and
TsetCO+ still can not handle dataset like Enron. For other
algorithms, it is clear that increasing either k or σ strengthens
the constraint on MQPCores, so the running time of the 4
remaining algorithms decreases. We can see that in most cases,
algorithms implemented with our framework (MQPCO-E,
MQPCO-E+) are faster than the other two algorithms. We can
also find that QPT+ can do help to the enumeration progress
especially when σ gets larger by comparing MQPCO-B and
MQPCO-B+ (or MQPCO-E and MQPCO-E+). Such results
confirm our analysis in Exp-1. In Figure 10 (c) and (d), as in
the previous experiment, both DAG oracle based method (QPT
+) and our framework have no significant effect due to fewer



TABLE III
RUNNING TIME (MS) OF ALGORITHMS FOR QPT MINING IN TIME SEQUENCE T WITH DIFFERENT LENGTH

|T | = 100 |T | = 200
ε : 5% ε : 10% ε : 15% ε : 20% ε : 5% ε : 10% ε : 15% ε : 20%

QPT QPT+ QPT QPT+ QPT QPT+ QPT QPT+ QPT QPT+ QPT QPT+ QPT QPT+ QPT QPT+
σ : 4 31 31 55 56 84 82 121 115 391 269 1,980 1,710 6,911 6,968 17,500 21,772
σ : 6 37 31 74 49 159 86 373 201 744 130 12,500 4,992 125,002 109,830 797,769 1,504,672
σ : 8 33 27 82 44 209 62 626 106 1019 85 41,034 5,681 1,117,753 1,340,381 INF INF
σ : 10 32 27 82 43 224 55 788 81 1112 77 64,507 1,826 2,573,018 346,324 INF INF

TABLE IV
TIME USED (MS) IN BUILDING DAG ORACLE FOR QPT+

ε : 5% ε : 10% ε : 15% ε : 20%
|T | = 100 23 39 49 57
|T | = 200 57 96 127 159

TABLE V
MEMORY USAGE (MB) OF QPT AND QPT+

|T | = 100 |T | = 200
ε : 5% ε : 15% ε : 5% ε : 15%

QPT QPT+ QPT QPT+ QPT QPT+ QPT QPT+
σ : 6 2.14 3.19 5.32 4.24 12.47 4.24 228.14 137.22
σ : 10 1.55 3.19 7.05 4.24 14.03 3.83 1,094.70 276.51

timestamps (or shorter tk(u)) in DBLP. In Figure 10 (c), the
performance of TsetCO and TsetCO+ is almost unaffected
by varying k, because the bottleneck of these two algorithms
lies in mining QPT in the first step. If σ is fixed, the number
of QPT and QPS computed in the first step will not change. In
MQPClique enumeration, Figure 10 (e) and (f) and Figure 10
(g) and (h) show similar results.

Exp-5: Efficiency of algorithms for MQPCore and MQP-
Clique enumeration with varying ε. Next we evaluate
the efficiency of algorithms for MQPCore and MQPClique
enumeration with varying ε and default k, σ. Figure 11 (a)
and (b) show the running time of algorithms for MQPCore
enumeration with varying ε on Enron and DBLP. We can
see that in Figure 11 (a), increasing ε puts heavy load on
the six algorithms, but MQPCO-E and MQPCO-E+ still
outperforms the other four algorithms significantly, which
proves the effectiveness of our framework. We can also see
that on DBLP (Figure 11 (b)), MQPCO-E and MQPCO-E+
are slightly faster than the other four algorithms. However,
except TsetCO and TsetCO+, all these algorithms are not
sensitive to ε. This is because the unit of timestamps in
DBLP is year, and many different events are recorded to have
occurred in the same year, although they did not happen at the
same time. Therefore, many potential quasi-periodic events are
inaccurately recorded as strict periodic events. TsetCO and
TsetCO+ are sensitive to ε because they directly mine QPT
in the whole timestamp set of DBLP. All results above can
still be found in MQPClique enumeration (Figure 11 (c) and
(d)). In conclusion, on datasets with fine-grained timestamp
unit, such as Enron, ε can be set from a smaller starting value
(5%). On datasets with coarse-grained timestamp unit, such as
DBLP, ε can be set from a larger starting value, such as 15%.

Exp-6: Scalability. In this experiment we evaluate the scala-
bility of MQPCL-E+ on IMDB and a larger dataset DeWiki.
DeWiki is downloaded in konect (http://konect.cc/) and has 2
million vertices, 68 million temporal edges and 3,668 different
timestamps. The results are shown in Figure 12. In each
dataset, we sample vertices and timestamps respectively. In
sampling timestamps, for example, if 20% of the timestamps
are sampled, then only temporal edges with the smallest
20% of timestamps will be retained. We can see that with
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Fig. 10. Running time of algorithms for MQPCore enumeration and
MQPClique enumeration with varying k, σ. ε = 5%

increasing |V | and |T |, the running time of MQPCL-E+
increases smoothly in both two datasets, which suggests that
our algorithm is scalable.

Exp-7: Memory usage of the framework. In this experi-
ment we evaluate the memory usage of our framework in
MQPClique enumeration using TsetCL+, MQPCL-B+, and
MQPCL-E+. Table VI shows the memory usage of these
algorithms in all datasets with the default parameters. We
can see that in the first three datasets, especially in LKML
and Enron, although the temporal graph itself is smaller than
DBLP and IMDB, with much more timestamps, TsetCL+
is unable to complete QPT mining in these datasets, and
MQPCL-B+ have to store numerous QPTs and quasi-periodic
subgraphs. On the contrary, MQPCL-E+ achieve smaller tk(u)
and store only a few QPTs and local quasi-periodic subgraphs.
As a result, MQPCL-E+ consume less than 10% of the
memory that is consumed by MQPCL-B+. We can also see
that in DBLP and IMDB, the memory usage of the three
algorithms are close, which is because the temporal graph
itself is pretty large but the number of timestamps is small,
and only a small number of quasi-periodic subgraphs will be
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Fig. 11. Running time of algorithms for MQPCore (k = 3, σ = 6) and
MQPClique (k = 4, σ = 6) enumeration with varying ε on Enron and
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TABLE VI
MEMORY USAGE (MB) OF THE FRAMEWORK

TsetCL+ MQPCL-B+ MQPCL-E+
Hospital > 658.5 2.3 2.4
LKML > 468.8 > 10, 000 66.5
Enron > 885.4 3,685.7 105.2
DBLP 1,974.9 1,612.3 1,613.4
IMDB 7,156.9 7,941.5 7,940.7

generated in these algorithms.

VI. RELATED WORK

Periodic subgraph mining. Our work is related to periodic
subgraphs mining in temporal networks. Previous research on
this topic, such as [3]–[5], focused solely on identifying peri-
odic subgraphs without considering cohesive structures such as
communities or the quasi-periodicity of these structures. Zhang
et al. [7] studied the problem of mining seasonal-periodic
subgraphs, which exhibit periodicity for multiple particular
periods (the differences between adjacent timestamps) over
multiple consecutive time intervals in temporal networks.
However, they only set an upper limit for those periods and did
not consider the lower limits. Qin et al. [6] focused on mining
periodic cliques in temporal networks but did not consider
quasi-periodicity. Meanwhile, Zhang et al. [14] proposed
PERCeIDs for periodic community detection using tensor
factorization and period estimation. However, estimating a
period for a periodic community over the entire time range
of a temporal network may not be convincing since not all
periodic behaviors persist throughout the entire duration of
real-world datasets. Additionally, they did not address the
quasi-periodicity of communities.

Quasi-periodic behavior mining in sequence data. Our work
focuses on quasi-periodic behavior mining, which may also
occur in time series or event sequences such as computer
monitoring logs [15] or transaction histories. Previous research
on this topic includes the work of Yang et al. [16], who first

introduced the problem of asynchronous (or quasi) periodic
pattern mining in time series data. Huang et al. [17] proposed
a more general model of asynchronous periodic patterns where
a time slot can contain multiple events. More recent works
on asynchronous periodic pattern mining include [18]–[21],
but all of these approaches use a user-specified value to limit
the range of periods, which can not adapt to the period itself
(e.g., the range of periods of yearly gathering should be
larger than that of weekly meeting). Other works focus on
mining quasi-periodic patterns in integer sequences, such as
the work of Gfeller [8] and Amir et al. [22]. In their works, the
range of periods is adaptive to the minimum period. However,
their focus is on mining the longest quasi-periodic pattern,
while our work aims to mine all fixed-length quasi-periodic
patterns, which is more challenging. There are also researchers
who have studied mining quasi-periodic behaviors in spatio-
temporal event sequence, such as [23]–[28]. Their works did
not consider quasi-periodic behavior in temporal networks.

Cohesive subgraph mining. Our work is also related to
cohesive subgraph mining. There are many recent works
that model cohesive subgraphs by k-core or k-clique. For
example, Kim et al. [29] propose (p, n)-core that combines
k-core and signed edges. Dai et al. [30] mine (k, η)-cores
in uncertain graphs. Liao et al. [31] mine D-core in directed
graphs, which can also be seen as a variant of k-core.
For k-clique, the classical Bron-Kerbosch algorithm [10]
and its variants [32]–[34] are widely used. Some recent
works focus on fairness-aware maximal clique enumeration
[35], maximal clique enumeration on uncertain graphs [36],
maximum clique enumeration [37], and parallelizing maximal
clique enumeration [38]. In temporal networks, Li et al.
[39] developed an algorithm to detect persistent communities
(modeled by k-core) over time in temporal networks. However,
unlike these works, our work focuses on the problem of mining
quasi-periodic cohesive subgraphs in temporal networks.

VII. CONCLUSION

In this paper, we address the problem of mining quasi-
periodic communities in temporal networks. We propose two
novel models for modeling quasi-periodic communities: maxi-
mal ε-quasi σ-periodic k-core and maximal ε-quasi σ-periodic
k-clique. To efficiently mine these quasi-periodic communi-
ties, we develop a two-stage framework. In the first stage,
we develop a novel DAG oracle based method to identify
all quasi-periodic sub-sequences, which enables us to quickly
determine whether a vertex can be part of a quasi-periodic
community. In the second stage, our framework computes
local quasi-periodic subgraphs containing each vertex and then
detects quasi-periodic communities within these subgraphs. In
addition, we also propose several non-trivial pruning rules to
further speed up the proposed algorithms. Finally, we evaluate
the effectiveness and efficiency of our algorithms using five
real-world temporal graphs. Our experimental results demon-
strate the superiority of the proposed methods.
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