
Neighborhood Skyline on Graphs:
Concepts, Algorithms and Applications

Qi Zhang†, Rong-Hua Li†, Hongchao Qin†, Yongheng Dai‡, Ye Yuan†, Guoren Wang†
†Beijing Institute of Technology, Beijing, China; ‡Diankeyun Technologies Co. , Ltd.;

qizhangcs@bit.edu.cn; lironghuabit@126.com; qhc.neu@gmail.com;
toyhdai@163.com; yuan-ye@bit.edu.cn; wanggrbit@126.com

Abstract—Neighborhood inclusion, representing that all the
neighbors of a vertex are also adjacent to another vertex, has been
recognized as an important relationship between two vertices in
a graph. We call a vertex u dominating v, denoted by v ≤ u, if
N(v) ⊆ N(u)∪ {u} holds, where N(v) denotes the set of neigh-
bors of v. Based on such a domination relationship, we propose a
concept called neighborhood skyline. The neighborhood skyline is
a set of vertices in which any vertex u cannot be dominated by the
other nodes in the graph G, i.e., �v ∈ G, u ≤ v. We study a new
problem, called neighborhood skyline computation, and develop a
filter-refine search framework, FilterRefineSky, to efficiently find
the neighborhood skyline by searching the vertices in a small
candidate set instead of in the entire graph. We show that our
neighborhood skyline technique can be used to speed up the
computation of two well-studied group centrality maximization
problems and the maximum clique search problem in graphs.
Extensive experimental studies conducted on five large real-life
datasets demonstrate the effectiveness of neighborhood skyline,
and the efficiency and scalability of our algorithms.

I. INTRODUCTION

Neighborhood, perhaps, is the most basic concept in graphs,
which represents the set of vertices that are adjacent to a given
node. Most graph analysis tasks, such as shortest-path com-
putation [1], reachability query [2], and cohesive community
detection [3], frequently use the concept of neighborhood.
Neighborhood inclusion is a basic relationship between two
neighborhoods, representing that all neighbors of one node
are also connected with another node.

Recently, the neighborhood inclusion relationship has been
recognized as an important operator between two vertices for
many graph analysis tasks. For example, in the problem of
maximum independent set search, if the neighbors of a node
are contained by that of others, then it can be safely pruned
as it definitely not be in a maximum independent set. Such
a reduction rule captured by neighborhood inclusion can be
iteratively and incrementally applied to explore the maximum
independent set [4], [5]. For shortest distance queries, a widely
adopted approach is to construct an off-line index to speed
up online query processing. Neighborhood inclusion arises an
equivalence relation rule which can be used to compress the
graph and further reduce the size of index structure [6]. In
addition, a pre-order derived by neighborhood inclusion yields
a novel graph, called threshold graph [7], [8], and much re-
search has been done on threshold graphs, including spanning
tree counting [9], characteristic polynomial computation [10]
and so on.

In general, the set of neighbors of a vertex u is com-
monly known as the open neighborhood, and is denoted by
N(u) = {v ∈ V |(u, v) ∈ E}. On the other hand, the closed
neighborhood of u is represented as N [u] = N(u) ∪ {u}.
Based on the neighborhood inclusion [7], for vertex u and
vertex v, a domination order v ≤ u, as well as a vicinal pre-
order, can be defined which means that v’s open neighborhood

is included in u’s close neighborhood, i.e., N(v) ⊆ N [u]. We
say that v is dominated by u if v ≤ u holds for brevity.
However, some vertices in a graph do not have this pre-order
relation. That is, they cannot be dominated by other vertices.
We define such a set of vertices as neighborhood skyline.
Formally, a vertex u belongs to a neighborhood skyline if and
only if �v ∈ V, u ≤ v holds. Consider the graph G in Fig. 1
as an example, the neighborhood skyline R is the set of all
red vertices as there is no vertex in V \R can dominate them.

�

�

�

��

�� ��

�� ��

�	 �

����

����

���

���

���

���

Fig. 1. The graph G (red vertex: the vertex in the neighborhood skyline set)

In this paper, we study a novel problem, namely, the neigh-
borhood skyline computation problem, which is useful for
many network analysis applications [11]–[26]. For instance,
for the classic group closeness maximization problem [11],
[12], we show that we only need to explore the vertices on
the neighborhood skyline, instead of the entire vertex set of
a graph, thus significantly improving the efficiency. Similarly,
our technique can also be used to significantly prune the search
space for the classic group betweenness maximization problem
and the group harmonic maximization problem, which have
been successfully applied in many network analysis related
applications [13]–[16]. In addition, the neighborhood skyline
technique can also be applied to speed up the maximum clique
computation which is a fundamental problem in graph analysis
[17]–[27].

To compute the neighborhood skyline on graphs, a basic
idea is to calculate neighborhood inclusion relations among all
vertices, and then select the neighborhood skyline according
to those relations. As a key step, identifying neighborhood
inclusion relations for all vertices is equivalent to the set
containment join problem which finds all records in a data set
S that contain the record qi for each qi in a query set Q. Here
the data set S contains n records and each record Si is the
set N(i)∪{i}, i ∈ V , and the query set Q contains n records
where each record qi is the set N(i), i ∈ V . However, the
state-of-the-art algorithms for set containment join [28]–[33]
are inefficient to compute neighborhood inclusion relations for
two reasons. The first is that for each vertex u, these algorithms
need to perform set containment query over n records (i.e., n
vertices), which causes substantial unnecessary comparisons
since the neighborhood inclusion relations occur only between

585

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00051

20
23

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
9-

8-
35

03
-2

22
7-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

55
15

.2
02

3.
00

05
1

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

u and its 2-hop neighbors. Second, these algorithms usually
construct an inverted index on the data set S and a prefix
tree on the query set Q to improve efficiency because the
cardinality of Q is much smaller than that of S in the set
containment join problem. While in our neighborhood skyline
search problem, Q’s size is almost the same as S’s size
and thus the memory overhead is unacceptable. Considering
the specificity of our problem, i.e., a vertex can only be
dominated by its 2-hop neighbors, a potential solution is to
adapt the algorithm proposed by Brandes et al. [7] which is
originally used to calculate neighborhood inclusion relations
among all vertices. It is easy to derive that such a potential
solution consumes O(mdmax) time in which m represents
the number of edges and dmax is the maximum degree of
vertices in G. Clearly, such a simple algorithm is very costly
for massive graphs because it requires identifying domination
orders between each node and its neighbors within 2-hop. In
addition, when determining the domination order for a vertex
pair, a slight difference between their neighbors can break
the neighborhood inclusion relationship, causing substantial
unnecessary comparisons.

In this paper, we focus mainly on two aspects to improve
the efficiency of such a basic algorithm: 1) reducing the search
space of the neighborhood skyline, and 2) efficiently identify-
ing the neighborhood inclusion relation of a vertex pair. To this
end, we develop a novel filter-refine search framework which
can capture approximate candidates of neighborhood skyline
with low costs and calculate the exact skyline by using a bloom
filter technique with low memory usage. In addition, we also
investigate two applications on group centrality maximization
problems and one application on maximum clique computation
problem to show the power of our neighborhood skyline
technique. To the best of our knowledge, this is the first work
that studies the problem of neighborhood skyline search in a
graph. Also, we are the first to apply the neighborhood skyline
technique to speed up the group centrality maximization and
maximum clique search problems. In summary, we make the
following contributions.
A novel problem : neighborhood skyline computation. We

propose a new concept, namely, neighborhood skyline, and
investigate a novel problem of neighborhood skyline search.
A filter-refine search framework, i.e., FilterRefineSky, is de-
veloped to address this problem which includes a filter and a
refining phase. In the filter phase, we identify a small set of
candidate vertices for the neighborhood skyline by introducing
an edge-constraint on the neighborhood inclusion. We show
that such a filter technique can significantly prune unpromising
vertices. In the refining phase, we present a bloom-filter-
based technique to further speed up the computation of the
neighborhood inclusion relation between two vertices.
Applications of neighborhood skyline. We present three ap-

plications to exhibit the effectiveness of our neighborhood
skyline technique. We show that the neighborhood skyline
can be used to speed up the computation of group closeness
maximization and group harmonic maximization problems.
Our neighborhood skyline based pruning technique can work
for most group centrality maximization problems in which the
group centrality measure is based on the shortest-path distance,
thus it could be of independent interests. We also show that the
neighborhood skyline based pruning technique can accelerate
the maximum clique computation.
Extensive experiments. We conduct comprehensive experi-

ments to evaluate the performance of our proposed algorithms

using five large real-life datasets. The experimental results
show that 1) the proposed FilterRefineSky algorithm is signif-
icantly superior to the baseline for finding the neighborhood
skyline in a graph; 2) the cardinality of the neighborhood
skyline is significantly less than the cardinality of original ver-
tex set in the graph, thus the neighborhood skyline technique
will be very effective for pruning for some downstream graph
analysis applications; 3) the neighborhood skyline technique
can substantially speed up the calculation of finding a group
with the highest group closeness or group harmonic centrality
measure and identifying the maximum clique search.
Reproducibility. The source code of this paper is available

at https://github.com/QiZhang1996/neighborhoodskylines.

II. PRELIMINARIES

Consider an undirected and unweighted graph G = (V,E),
where V is the collection of vertices and E is the collection
of edges. Denote by n = |V | and m = |E| the number of
vertices and edges in G, respectively. For a vertex u ∈ V ,
N(u) is the set of neighbors of u which is also known as
open neighborhood, i.e., N(u) = {v ∈ V |(u, v) ∈ E}. The
closed neighborhood of u is denoted by N [u] = N(u)∪ {u}.
Let deg(u) = |N(u)| be the degree of u and dmax be the
maximum degree of the vertices in G. A subgraph GS =
(VS , ES) induced by a set of vertices S is a subgraph of G
where VS = S and ES = {(u, v)|u, v ∈ S, (u, v) ∈ E}.

Below, we give the concepts of neighborhood inclusion [7]
and domination order [7], which are important to define the
neighborhood skyline.
Definition 1: (Neighborhood Inclusion) Given two arbitrary

different vertices u, v ∈ V , if v’s open neighborhood is
included by u’s closed neighborhood, i.e., N(v) ⊆ N [u], we
say that v is neighborhood-included by u.
Definition 2: (Domination Order) Given two arbitrary dif-

ferent vertices u, v ∈ V , the domination order v ≤ u is defined
if and only if (1) v is neighborhood-included by u and u
is not neighborhood-included by v, i.e., N(v) ⊆ N [u] and
N(u) � N [v], or (2) u and v are neighborhood-included by
each other and u has a smaller ID than v, i.e., N(v) ⊆ N [u],
N(u) ⊆ N [v] and uid < vid.

With Definition 1 and Definition 2, the neighborhood inclu-
sion relations and domination orders can only exist between a
vertex and its reachable vertices within two hops. In the fol-
lowing, we introduce a concept called neighborhood skyline.
Definition 3: (Neighborhood Skyline) Given a graph G =

(V,E), a vertex set R ⊆ V is a neighborhood skyline if it is
the largest set where each vertex u ∈ R cannot be dominated
by other vertices in V , i.e., ∀u ∈ R, �v ∈ V, u ≤ v.

According to Definition 3, we formulate the neighborhood
skyline search problem as follows.

Problem formulation. Given a graph G, our goal is to seek
a vertex set R that is a neighborhood skyline of G based on
the domination order.
Example 1: Reconsider the graph G shown in Fig. 1. Take

vertex v0 as an example. Clearly, none of the vertices in
V can dominate v0, and thus v0 belongs to a neighbor-
hood skyline according to Definition 3. While the vertex
v13 is not in a neighborhood skyline because we can find
that the vertex v8 can dominate v13 based on neighborhood
inclusion, i.e., v13 ≤ v8. With Definition 3, the vertex set
R = {v0, v1, v4, v5, v6, v7, v8, v9} is a neighborhood skyline
of G. We can easily check that all the vertices in R cannot be
dominated by any vertices in V and R is the largest. �

586

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

Challenges. To solve the neighborhood skyline search prob-
lem, a basic algorithm is to compute whether a node is
dominated by the others, i.e., identify neighborhood inclusion
relationships, for each vertex in a graph. Clearly, computing
neighborhood inclusion relationships can be considered as the
set containment join problem which finds all records in a data
set S that contain the record qi for each qi in a query set
Q. Here the data set S = {s1, s2, ..., sn} is the set of n
records in which si = N(i) ∪ {i}, i ∈ V , and the query set
Q = {q1, q2, ..., qn} contains n records in which each record
qi is N(i), i ∈ V . The state-of-the-art algorithms [28]–[33]
for set containment join problem usually construct an inverted
index on S and a prefix tree on Q to improve efficiency since
the size of Q is significantly smaller than that of S. Such
algorithms are often very costly for our neighborhood skyline
search problem because Q’s size is almost the same as S’s
size and the memory overhead is unacceptable. In addition,
those algorithms perform set containment query for n records
(i.e., n vertices), which is inefficient for our problem since
a vertex only maintains the neighborhood inclusion relations
with its 2-hop neighbors rather than the whole vertex set.
Considering this fact, another potential solution to calculate
neighborhood inclusion relations is adapting the partial order
computation algorithm with O(mdmax) time [7], where m is
the number of edges and dmax is the maximum degree of
vertices in G. However, such a simply method is very costly
for massive graphs since it needs to check domination orders
between each node and its 2-hop neighbors. Moreover, a slight
difference between the neighbors of two vertices can violate
the neighborhood inclusion, causing unnecessary comparisons
for the common neighbors. In summary, the challenges of the
neighborhood skyline search problem are twofold: (1) how
to develop the efficient techniques to prune the vertices that
must not belong to the neighborhood skyline; and (2) how to
efficiently identify whether there is a neighborhood inclusion
relation between two vertices.

To tackle these challenges, in the following sections, we will
propose a filter-refine search framework which first identifies
a small set of candidate vertices with low costs and then
calculates the exact neighborhood skyline on this small set.
Equipped with the bloom filter technique, our framework
can efficiently compute the neighborhood inclusion relation
for a pair of vertices. In addition, we will also apply the
neighborhood skyline technique to speed up the computation
of two classical group centrality maximization problems as
well as the maximum clique search problem.
Remark. It is worth noting that our neighborhood skyline
search problem is fundamentally different from the problem
studied in [7]. Specifically, our neighborhood skyline focuses
on whether a node is dominated by other vertices (we only
need to identify those vertices that are not dominated by the
others), while the problem studied in [7] aims to identify the
entire partial order set (i.e., it requires finding the set of all
domination relationships between any pair of nodes). As a
result, our goal of developing neighborhood skyline search
algorithms is to reduce the number of candidates as many
as possible, and to identify neighborhood inclusion between
two nodes as efficiently as possible. Further, the techniques
for our problem are totally different from that for partial order
computation [7]. Additionally, the neighborhood skyline based
pruning technique can be very useful for two group centrality
maximization problems and the maximum clique computation
problem as shown in Sec. IV, thus it could be of independent

Algorithm 1: BaseSky
Input: G = (V,E).
Output: The neighborhood skyline vertex set R.

1 R← ∅;
2 Let O be an array with size n;
3 for u ∈ V do O(u)← u;
4 for u ∈ V do
5 if u �= O(u) then continue;
6 Initialize an array T with T (i) = 0, 0 ≤ i < n;
7 for v ∈ N(u) do
8 for w ∈ N [v]\{u} do
9 T (w)← T (w) + 1;
10 if T (w) = deg(u) then
11 if deg(w) = deg(u) then
12 if uid > wid and O(u) = u then
13 O(u)← w;

14 else if O(w) = w then O(w)← u;

15 else
16 if O(u) = u then
17 O(u)← w; break;

18 for u ∈ V do
19 if u = O(u) then R← R ∪ {u};
20 return R;

interests.

III. NEIGHBORHOOD SKYLINE SEARCH ALGORITHMS

In this section, we first give a baseline algorithm, called
BaseSky, to find the neighborhood skyline in a graph. To
improve efficiency, we then propose a filter-refine search
framework, namely, FilterRefineSky, to solve our problem.

A. A Baseline algorithm
To solve the problem of neighborhood skyline search, a

straightforward method is to identify neighborhood inclusion
relations for each vertex and then select those vertices that
cannot be dominated by others. Brandes et al. proposed a
subset partial order algorithm to calculate all neighborhood
inclusion relationships among the vertices in a graph [7]. We
slightly modify this algorithm to compute the neighborhood
skyline. The pseudo-code of this algorithm is outlined in
Algorithm 1, which is referred to as BaseSky.

As aforementioned, a vertex only keeps neighborhood in-
clusion relations and domination orders with the vertices that
are reachable within two hops. For brevity, we employ N2(u)
to denote those 2-hop reachable vertices from a vertex u
and O(u) to indicate the vertex that can dominate u, i.e.,
u ≤ O(u). For each vertex u, BaseSky initializes the variable
O(u) to itself and then explores the vertices in N2(u) to
find the relation of neighborhood inclusion (lines 7-17). For a
vertex w ∈ N2(u), T (w) records the size of the intersection
of u’s open neighborhood and w’s close neighborhood, i.e.,
T (w) = |N(u) ∩N [w]|. Obviously, if T (w) = deg(u) holds,
that means the set N(u) ∩ N [w] is equal to the set N(u),
and further we have N(u) ⊆ N [w]. Thus, u is neighborhood-
included by w and BaseSky maintains the domination relation
depending on whether u and w are dominated by each other. If
not, u is definitely not contained in the neighborhood skyline.
In this case, BaseSky sets O(u) to w and stops exploring the
remaining vertices in N2(u) (lines 15-17). On the other hand,
we assume that u is the vertex with a smaller ID without losing
generality. Since u and w dominate each other, BaseSky sets
the O(w) to u according to Definition 3. Whether u belongs
to the neighborhood skyline is still unclear, thus BaseSky

587

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

continues to check the next 2-hop reachable vertex to explore
the domination orders (lines 11-14). Finally, for each vertex
u, if O(u) = u, u belongs to the neighborhood skyline, and
BaseSky adds u into the result set R. Thus, the set R maintains
the neighborhood skyline in the graph correctly. Note that in
Algorithm 1, to improve efficiency, we only allow O(u) to be
updated once since vertex u is definitely not contained in the
skyline once we can find a vertex v in V satisfying u ≤ v.

Below, we provide the time and space complexity of Al-
gorithm 1. Due to space limits, all the missing proofs and
additional examples can be found in the full version of this
paper [34].
Theorem 1: Given a graph G = (V,E), Algorithm 1 takes

O(mdmax) time with O(m+ n) space in the worst case [7].

B. A novel filter-refine framework
The BaseSky algorithm may be not very efficient for

neighborhood skyline search problem. To this end, we further
propose a filter-refine framework, called FilterRefineSky, to
solve our problem. The main idea of FilterRefineSky is to yield
a candidate vertex set to reduce the search space, and then
compute the exact skyline vertices among them with the bloom
filter technique. Below, we first give an efficient solution to
generate the candidate vertex set of the neighborhood skyline,
followed by our filter-refine framework in detail.

B.1 The candidate set for neighborhood skyline

We first give a more stringent definition of neighborhood
inclusion, called edge-constrained neighborhood inclusion, as
follows.
Definition 4: (Edge-Constrained Neighborhood Inclusion)

Given two arbitrary different vertices u, v ∈ V , we say v is
neighborhood-included with edge constraint by u if and only if
v is neighborhood-included by u and there is an edge between
u and v, i.e., N [v] ⊆ N [u].

According to Definition 4, the edge-constrained neighbor-
hood inclusion relations can only exist between a vertex and
its neighbors. In the following, we define the edge-constrained
domination order for two vertices in a graph.
Definition 5: (Edge-Constrained Domination Order) Given

two vertices u, v ∈ V , the edge-constrained domination order
v � u is defined if and only if (1) v is edge-constrained
neighborhood-included by u, and u is not edge-constrained
neighborhood-included by v, i.e., N [v] � N [u], or (2) u and v
are edge-constrained neighborhood-included by each other and
u has a smaller ID than v, i.e., N [v] = N [u] and uid < vid.

Based on the edge-constrained domination order, we can
calculate a set C, called neighborhood candidates, in which
each vertex u satisfies �v ∈ V, u � v. We have the following
lemma which is useful for our FilterRefineSky algorithm
to obtain the neighborhood candidates for the neighborhood
skyline.
Lemma 1: Given a graph G = (V,E), the neighborhood

skyline set R based on the domination order is a subset of the
neighborhood candidates C calculated by the edge-constrained
domination order.

According to Lemma. 1, the neighborhood skyline R is
a subset of the set of neighborhood candidates C. Thus we
can use C as an approximation of R because computing C
only requires maintaining the size of the intersection of close
neighborhoods for two ends of an edge. The algorithm to
calculate the neighborhood candidates C, called FilterPhase,
is depicted in Algorithm 2, which is an important phase in

Algorithm 2: FilterPhase
Input: G = (V,E), an array O with size n.
Output: The neighborhood candidate set C, the array O.

1 C ← ∅;
2 for u ∈ V do O(u)← u;
3 for u ∈ V do
4 if u �= O(u) then continue;
5 Initialize an array T with T (i) = 0, 0 ≤ i < n;
6 for v ∈ N(u) do
7 T (v)← T (v) + 1;
8 if T (v) = deg(u) then
9 if deg(v) = deg(u) then
10 if uid > vid and O(u) = u then
11 O(u)← v;
12 else if O(v) = v then O(v)← u;

13 else
14 if O(u) = u then
15 O(u)← v; break;

16 for u ∈ V do
17 if u = O(u) then C ← C ∪ {u};
18 return (C,O);

our FilterRefineSky. The workflow of FilterPhase is similar to
that of BaseSky. The difference is that we only consider the
edge-constrained domination orders which only exist between
a vertex and its neighbors. Thus, in Algorithm 2, we identify
edge-constrained domination orders for each vertex by explor-
ing its neighbors (lines 6-15), and FilterPhase finally returns
the neighborhood candidates according to the indicators O(∗).
Note that we also allow these indicators to be maintained once
in FilterPhase like Algorithm 1 for improvement. The time and
space complexity of Algorithm 2 are given in Theorem 2.
Theorem 2: Given a graph G = (V,E), in the worst case,

Algorithm 2 takes O(m) time using O(m+ n) space.

B.2 The filter-refine framework

Here we propose a filter-refine framework to compute the
neighborhood skyline, called FilterRefineSky. Before further
processing, we first briefly introduce the bloom filter technique
which is used in FilterRefineSky to efficiently identify the
neighborhood inclusion relation of two sets.

Given a set of elements X , and a hash function that can
randomly map an element x ∈ X to a number h(x) in
{1, 2, ..., s}, denoted as h : X → Z. The bloom filter of X
is defined as BF (X) = {h(x)|x ∈ X} [35]. In practical
applications, the bloom filter BF (X) can be implemented
as a b-size bits array with each bit equal to 0, and then
set the (h(x) mod b)-th bit to 1 for each x in X . In this
implementation, we use BFi(X) to represent the i-th bit
of BF (X) for brevity. Bloom filter can be used to test
the membership of an element in a set. Consider a set of
elements X and an element e, if h(e) ∈ BF (X) holds (or, the
BF(h(e) mod b)(X) equals 1), then we can claim that e belongs
to X; otherwise e cannot be in X . Note that employing the
bloom filter to determine e ∈ X? is possible to obtain a false-
positive result, but not to get a false-negative answer.

Recall that the key issue to compute the neighborhood
skyline is to identify the domination order u ≤ v, i.e., N(u) ⊆
N [v]. In FilterRefineSky, the candidate set of neighborhood
skyline, C, is calculated first by FilterPhase based on the edge-
constrained domination order (i.e., N [u] ⊆ N [v]). Therefore,
determining whether a vertex u belongs to the neighborhood
skyline requires only identifying the relation N(u) ⊆ N(v)
between u and v ∈ N2(u). To this end, we can construct a

588

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: FilterRefineSky
Input: G = (V,E).
Output: The neighborhood skyline vertex set R.

1 R← ∅; C ← ∅;
2 Let O be an array with size n;
3 (C,O)← FilterPhase(G,O);
4 for u ∈ C do Construct bloom filter BF (u);
5 for u ∈ C do
6 if u �= O(u) then continue;
7 issky ← true;
8 for v ∈ N(u) do
9 if issky = false then break;
10 for w ∈ N(v)\{u} do
11 if issky = false then break;
12 if deg(w) < deg(u) or O(w) �= w then
13 continue;
14 if BF (u)&BF (w) �= BF (u) then continue;
15 for x ∈ N(u)\{v} do
16 if BFcheck(u,w, x) = false then
17 issky ← false; break;
18 if NBRcheck(w, x) = false then
19 issky ← false; break;
20 if issky = false then
21 issky ← true; continue;
22 if deg(w) = deg(u) then
23 if uid > wid and O(u) = u then
24 O(u)← w;

25 issky ← true;
26 else if O(u) = u then
27 O(u)← w; issky ← false;

28 for u ∈ V do
29 if u = O(u) then R← R ∪ {u};
30 return R;

bloom filter BF (u) with size equal to b for each vertex u ∈ C
based on its neighbors N(u) as aforementioned. With those
bloom filters, if w is a common neighbor of u and v, then
the (h(w) mod b)-th bit is 1 for both BF (u) and BF (v).
For an arbitrary i-th bit, if BFi(u) is 1 while BFi(v) equals
0, that means at least one vertex w is a neighbor of u but
not that of v (i.e., w ∈ N(u), w /∈ N(v)). Thus, u cannot
be dominated by v based on Definition 2. Equipped with the
bloom filters, we can quickly identify the domination order in
the FilterRefineSky framework.

Algorithm 3 outlines the pseudo-code of FilterRefineSky.
The algorithm first sets the collections R and C to empty, and
initializes an array O to maintain the domination relations
(lines 1-2). It then invokes Algorithm 2 (FilterPhase) to
calculate the neighborhood candidates C, and constructs the
bloom filter structures for those candidates (lines 3-4). Since
the neighborhood skyline is a subset of C (Lemma. 1), we only
need to identify the skyline vertices in C by checking whether
they can be dominated by the others based on neighborhood in-
clusion (lines 5-27). For each vertex u ∈ C, a boolean variable
issky, initialized as true, is used to indicate the status of u. If
issky is false, u does not belong to the neighborhood skyline.
To determine the value of issky, the algorithm explores the
domination orders between u and its 2-hop neighbors because
the 1-hop neighbors have been explored in FilterPhase. For
each w ∈ N2(u), if deg(w) < deg(u), u is definitely not
dominated by w, thus FilterRefineSky explores the next 2-
hop vertex (lines 12-13). Otherwise, the algorithm checks the
number of common neighbors of u and w by their bloom
filter structures. If BF (u)&BF (w)
= BF (u), there exists
at least one neighbor of u that is not connected to w based
on the property of bloom filter. Thus, u cannot be dominated

(a) Clique (b) Tree (c) Circle (d) Path

Fig. 2. Neighborhood skyline and neighborhood candidates in several special
graphs (red vertex: the vertex in R and C)

by w. FilterRefineSky stops the current loop and identifies
the next vertex in N2(u) (line 14). Otherwise, the algorithm
further verifies each neighbor x using two constraints, namely,
BFcheck and NBRcheck. BFcheck is coarse-grained to check
whether x is also a neighbor of w by the BF(H(x) mod b)(w)
bit. Once this bit is 0, u cannot be dominated by w (lines 16-
17). While if x overcomes BFcheck, we employ NBRcheck to
perform accurate identification to eliminate the false-positive
answers after BFcheck. That is, NBRcheck checks if each
neighbor x of u is also linked to w with the adjacency list
(lines 18-19). If one of the BFcheck and NBRcheck fails,
issky is set to false and FilterRefineSky stops searching the
next common neighbor x. When issky is false, the algorithm
resets issky to true and explores the next 2-hop vertex (lines
20-21). While issky equals true indicates that w can dominate
u, and thus FilterRefineSky processes u and w based on
their degrees (lines 22-27). Finally, FilterRefineSky outputs the
neighborhood skyline set R according to their indicators. Like
Algorithm 1, in FilterRefineSky, for each vertex u, the O(u)
is also maintained only once. Note that in FilterRefineSky,
for each neighbor x of u, BFcheck may cause false-positive
answer to the question x ∈ N(w)?. We further use NBRcheck
to perform an exact validation by visiting the adjacency list
when the answer of BFcheck is true. Thus, the FilterRefineSky
algorithm can exactly calculate the neighborhood skyline.

In FilterRefineSky algorithm, the bloom filter technique is
used to identify the relation N(u) ⊆ N(v) between u and its
2-hop neighbor v. To speed up the calculation, we only use
one hash function based on bit-wise operations to construct
bloom filter structures as used in [2]. Below, we analyze the
probability of false-positive for N(u) ⊆ N(v).
Lemma 2: Given a graph G = (V,E) and two vertices u,

v ∈ N2(u), the probability of false-positive for N(u) ⊆ N(v)
is (1 − (1 − 1

dmax
)d(v))|N(u)−N(v)|.

We analyze the time and space complexity of Algorithm 3
as follows.
Theorem 3: Given a graph G = (V,E), the worst-case time

complexity of Algorithm 3 is O(m + dmax

∑
u∈C deg(u)2).

Algorithm 3 outputs the neighborhood skyline of G using
O(m+ |C|dmax) space.

Note that in Theorem 3, the worst-case time complexity
of FilterRefineSky relies on the size of C. Fig. 2 illustrates
the skyline vertices (colored red) and neighborhood candidates
(colored red) in several special graphs. For a clique (Fig. 2(a)),
the sizes of neighborhood skyline R and neighborhood candi-
date set C equal 1 which are significantly less than the number
of vertices. In a complete binary tree (Fig. 2(b)), R and C both
include all non-leaf vertices. In a circle (Fig. 2(c)) and a path
(Fig. 2(d)), we have |R| = |C| = |V | and |R| = |C| = |V |−2,
respectively. Clearly, |C| and |R| are various for different
graphs. In general, in power-law graphs where the distribution
of degree obeys a power-law distribution [41], the sizes of R
and C are often much smaller than n because the vertices with
small degrees are more easily dominated by others. Hence,
the FilterRefineSky algorithm works efficiently in power-law
graphs, which is also supported by our experiment results.
Remark. Given two sets, the containment relationship be-

589

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

tween them is a deterministic concept. Therefore, we focus
on the exact neighborhood skyline computation based on such
a deterministic concept. It is also interesting to study the
“approximate neighborhood skyline” based on approximate
domination relationships, which clearly requires new defini-
tions and new algorithms with different techniques. We leave
this problem as an interesting future direction.

IV. APPLICATIONS OF NEIGHBORHOOD SKYLINE

In this section, we focus on two widely-used centrality mea-
sures, namely, closeness and harmonic centralities, and study
two applications on group closeness maximization search and
group harmonic maximization search to show the effectiveness
of our neighborhood skyline technique. In addition, we also
show that the neighborhood skyline technique can be applied
to speed up the maximum clique computation.

A. Group closeness maximization
The identification of important vertices in a network is a

central task in graph analysis. To this end, various centrality
measures are proposed as indicators for the importance of a
vertex. Everett et al. further formalized the concepts of group
centrality measures which allow determining the importance
of a vertex set [36]. An inherent problem is how to elaborately
pick the group of vertices with a given size k that can yield the
maximum score of a certain group centrality measure. Such
NP-hard problems are known as group centrality maximization
problems which arise in various applications such as resource
allocation, team formation, leader selection [37], and influence
maximization [38], and so on. In this paper, we mainly revolve
two widely-used measures, i.e, closeness and harmonic cen-
tralities, and study two applications on group closeness max-
imization search and group harmonic maximization search.

A.1 Problem formulation

Given two different vertices u and v, let d(u, v) be the
shortest-path distance between u and v. Denoted by d(u, S) =
mins∈S d(u, s) the distance between u and a vertex set S ⊆ V .
Below, we give the definitions of vertex closeness centrality
and group closeness centrality.
Definition 6: (Vertex Closeness Centrality) For a vertex

u ∈ V , u’s vertex closeness centrality is defined as: C(u) =
n∑

v∈V \{u} d(v,u)
.

Definition 7: (Group Closeness Centrality) For a vertex
set S ⊆ V , S’s group closeness centrality is: GC(S) =

n∑
v∈V \S d(v,S)

.

Based on vertex closeness centrality and group closeness
centrality, the problem of group closeness maximization is
formulated as follows.

Group Closeness Maximization Problem. Given a graph
G and an integer k, Group Closeness Maximization (GCM)
problem aims to identify a group S∗ ⊆ V of size
k with maximum group closeness centrality, i.e., S∗ =
arg maxS⊆V {GC(S) : |S| = k}.

The GCM problem was proved to be NP-hard [11]. It can
be solved by exact ILP (Integer Linear Programming) solvers
because this problem is a special case of p-median [12]. These
exact methods, however, can only handle very small graphs.
They are not applicable for networks with millions of vertices
and edges. To this end, recent research mainly investigates
approximation algorithms following greedy strategies to solve
this problem [11]–[13], [39]. In general, the main idea of these

Algorithm 4: NeiSkyGC (G, k)

Input: G = (V,E), an integer k ≥ 1.
Output: Set S ⊆ V with |S| = k, s.t. GC(S) is maximum.

1 Calculate the neighborhood skyline R;
2 S ← ∅;
3 while |S| < k do
4 v ← argmaxu∈(R\S)(GC(S ∪ {u})−GC(S));
5 S ← S ∪ {v};
6 return S;

greedy frameworks is to select the vertex with the largest
marginal gain of group closeness centrality into the result
set S at each round until the size of S equals k. In each
round, the marginal gain of every vertex u ∈ V \S can be
calculated by GC(S ∪ {u}) − GC(S). We refer to such a
simple implementation based on this idea as BaseGC. Given
the size of the required group k, the marginal gain calculation
is performed k(2∗n−k+1)/2 times in the BaseGC algorithm
where n is the number of vertices. Clearly, calculating the
marginal gain for each vertex u /∈ S in every round requires
exploring the shortest-path distance from a vertex to the set
S∪{u}, which is very costly. In the following, we will propose
a neighborhood skyline based pruning technique to speed up
the BaseGC algorithm.

A.2 A neighborhood skyline based solution

Below, we first derive a useful lemma, based on which we
come up with a pruning technique to speed up the calculation
for the GCM problem.
Lemma 3: Given a group S ⊆ V , for vertex u and vertex v

in G with v ≤ u and u, v /∈ S, GC(S ∪{u}) ≥ GC(S ∪{v})
holds.

Armed with Lemma. 3, we develop a general framework,
called NeiSkyGC, to find k vertices with the maximum group
closeness. The pseudo-code of NeiSkyGC is depicted in Al-
gorithm 4. The difference from BaseGC is that we only need
to compute the marginal gains of group closeness centrality
for the skyline vertices that are not included in S instead of
all vertices in V \S (line 4). For the desired group size k, the
marginal gain calculation is only called k(2 ∗ r − k + 1)/2
times in our NeiSkyGC algorithm in which r is the size of the
neighborhood skyline, i.e., r = |R|. Equipped with the neigh-
borhood skyline based pruning technique, the NeiSkyGC can
substantially reduce the number of marginal gain calculations
compared to the BaseGC algorithm. As a result, our technique
can significantly speed up the search of a k-size group with
the maximum group closeness score.
Example 2: Reconsider the graph G in Fig. 1. To yield

a group with size k = 3, the BaseGC algorithm needs to
compute the marginal gains for 15 + 14 + 13 = 42 vertices in
total. While utilizing our pruning technique, the NeiSkyGC
algorithm only requires to compute the marginal gains of
group closeness for the skyline vertices, thus it performs
only 8 + 7 + 6 = 21 marginal gain calculations. Obviously,
NeiSkyGC significantly reduces the number of marginal gain
calculations compared with BaseGC, thus making it more
efficient. �
B. Group harmonic maximization

B.1 Problem formulation

Here we first introduce the concepts of vertex harmonic
centrality and group harmonic centrality, which are essential

590

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

to formulate the problem of group harmonic maximization.
Definition 8: (Vertex Harmonic Centrality) For a vertex u ∈

V , the harmonic centrality of u, denoted as H(u), is computed
by H(u) =

∑
v∈V \{u}

1
d(v,u) .

Definition 9: (Group Harmonic Centrality) For a vertex
set S ⊆ V , the group harmonic centrality of S, denoted by
GH(S), is defined as GH(S) =

∑
v∈V \S

1
d(v,S) .

With Definition 8 and Definition 9, the group harmonic
maximization problem is defined as follows.

Group Harmonic Maximization Problem. Given a graph
G and an integer k, the problem of Group Harmonic Max-
imization (GHM) aims to find a group S∗ ⊆ V of size
k with maximum group harmonic centrality, i.e., S∗ =
arg maxS⊆V {GH(S) : |S| = k}.

The GHM problem is also NP-hard [13]. By relating the
GHM problem to the p-median problem, Angriman et al.
showed that the greedy framework can be used to solve
this problem with a 0.5-approximation guarantee, despite the
non-monotonicity of GH(·) [13]. Similar to BaseGC for the
GCM problem, such a greedy framework to solve the GHM
problem, called BaseGH, works as follows. It first puts the
vertex with the highest harmonic centrality to the group; and
then iteratively adds the vertex with the highest marginal gain
GH(S ∪{u})−GH(S) to the group. Given a desired size k,
the marginal gain calculation is invoked k(2 ∗ n − k + 1)/2
times, which is the main computational bottleneck in BaseGH.

B.2 A neighborhood skyline based algorithm

In the following, we establish an important lemma, based
on which we come up with an efficient pruning rule for the
GHM problem.
Lemma 4: Given a group S ⊆ V , for vertex u and vertex v

in G with v ≤ u and u, v /∈ S, GH(S∪{u}) ≥ GH(S∪{v})
holds.

Equipped with the pruning technique in Lemma. 4, we
develop a general framework, namely, NeiSkyGH, to search
k vertices with the maximum group harmonic. The difference
between BaseGH and NeiSkyGH is that the former needs
to compute the marginal gains of group harmonic score
for all vertices in V \S, while the latter only computes the
marginal gains for the vertices located in the neighborhood
skyline. Considering a required group size k, the marginal gain
calculation is performed k(2∗r−k+1)/2 times in NeiSkyGH,
where r is the number of skyline vertices. While BaseGH
computes the marginal gains for k(2 ∗ n− k + 1)/2 vertices,
thus NeiSkyGH significantly reduces the computational costs,
making it is superior to BaseGH. For instance, in Fig. 1, when
the group size is 3, BaseGH needs to compute the marginal
gains for 15 + 14 + 13 = 42 vertices, while NeiSkyGH only
computes the marginal gains for 8 + 7 + 6 = 21 vertices. The
pseudo-code of NeiSkyGH is similar to that of NeiSkyGC and
we omit it due to the space limit.

C. Maximum clique computation

C.1 Problem formulation

Given a graph G = (V,E), a vertex set H ⊆ V is a clique
if every pair of vertices of H is connected by edges in G.
The size of a clique H , denoted by |H|, is measured by its
number of vertices. A clique H of G is a maximal clique if
there is no clique Ĥ satisfying Ĥ ⊃ H . The maximum clique
is the clique with the largest number of vertices in G. Based on

Algorithm 5: NeiSkyMC (G)

Input: G = (V,E).
Output: The maximum clique H .

1 Calculate the neighborhood skyline R;
2 H ← ∅;
3 for u ∈ V do
4 if u ∈ R then
5 Ĥ = {u}; X̂ = N(u) ∩ V ;

6 Find a maximum clique by branch-and-bound method with Ĥ, X̂;

7 return H;

these definitions, the maximum clique computation problem is
formulated as follows.

Maximum Clique Computation Problem. Given a graph G,
the problem of Maximum Clique Computation (MCC) aims
to compute a maximum clique in G.

The MCC problem is NP-hard [40] and extensive algo-
rithms [17]–[27] are proposed for solving MCC problem
which follow a branch-and-bound framework. In particular, the
framework extends an initially empty clique H by adding the
vertices from a set X of candidate vertices to H , iteratively,
until no vertex can be added to H without violating the clique
property. Here, X contains the vertices that are adjacent to
all vertices of H , and is initialized with the vertex set V of
G. We refer to such a simple implementation based on the
branch-and-bound framework as BaseMCC.

C.2 A neighborhood skyline based algorithm

Below, we introduce an useful lemma, based on which we
derive an efficient pruning technique for the MCC problem.

Lemma 5: Given a graph G = (V,E), for vertex u and
vertex v in G with v ≤ u, if v belongs to a maximum clique
H , then u must be in H .

Equipped with the pruning technique in Lemma. 5, we de-
velop a general framework, namely, NeiSkyMC, to compute a
maximum clique in a graph G. The pseudo-code of NeiSkyMC
is outlined in Algorithm 5. The difference between BaseMCC
and NeiSkyMC is that, when adding the first vertex into H ,
BaseMCC needs to select all vertices in V as the first vertex
and perform branch-and-bound search to output a maximum
clique. While the latter only invokes the branch-and-bound
search for the vertices located in the neighborhood skyline
(line 4). That is to say, BaseMCC and NeiSkyMC perform
the branch-and-bound search for |V | vertices and |R| vertices,
respectively. In general, the size of R is significantly less than
that of V , and thus NeiSkyMC can substantially reduce the
computational costs, making it superior to BaseMCC.

C.3 Extending to finding k maximum cliques

Here we extend the neighborhood skyline pruning to the
problem of finding k maximum cliques. For a vertex u,
let MC(u) be the maximum clique that includes u. The
straightforward method of finding k maximum cliques is
to calculate the maximum clique for each vertex and then
pick the k cliques with the largest size. For brevity, we call
such a method BaseTopkMCC. Clearly, this method needs
to calculate maximum cliques for |V | vertices. Below, we
introduce the solution with the neighborhood skyline pruning
technique, which is based on Lemma. 6.

Lemma 6: Given a graph G = (V,E), for vertex u and
vertex v in G with v ≤ u, |MC(v)| ≤ |MC(u)| holds.

591

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

Armed with the pruning technique in Lemma. 6, we propose
an efficient algorithm, namely, NeiSkyTopkMCC, to compute
k cliques with the largest size in G. Specifically, in the first
round, NeiSkyTopkMCC performs the NeiSkyMC algorithm
to calculate a maximum clique. For the following k − 1
rounds, NeiSkyTopkMCC only computes maximum cliques
for vertices in the neighborhood skyline, and selects the clique
with the largest size as the answer of the current round. This
is because if v ≤ u holds, we have |MC(v)| ≤ |MC(u)|.
Thus, in the same round, we do not need to calculate the
maximum clique containing v. Note that in one round we pick
a maximum clique which is calculated in u’s ego-network,
i.e., u is clearly a skyline vertex, we need to update the
neighborhood skyline. This is because those vertices that are
dominated by u also have the potential to generate a maximum
clique with the largest size in the next round. We omit the
pseudo-code of NeiSkyTopkMCC due to the space limit.

D. Discussions
In Sec. IV-A and Sec. IV-B, we propose the general greedy

frameworks equipped with the neighborhood skyline based
pruning technique to solve the GCM and GHM problems.
Note that our pruning rules are orthogonal to all greedy
algorithms for solving the GCM problem [11]–[13], [39] and
the GHM problem [13], which iteratively select the vertex
with the maximum marginal gain of group centrality. In the
experiments, we will take Greedy++ [12] and Greedy-H [13] as
examples to show the practical performance of our technique
for the GCM and GHM problems.

Additionally, we can see that the key of Lemma. 3 and
Lemma. 4 is to derive the inequalities, i.e., d(w, S ∪ {u}) ≤
d(w, S ∪ {v}) and d(v, S ∪ {u}) = d(u, S ∪ {v}). Based
on the domination order v ≤ u, if the shortest path passes
through v from w to S, an alternative path including u
with the same length must be obtained and not vice versa,
thus these inequalities hold. In general, for the group cen-
trality measures based on the shortest-path distance, the two
inequalities always hold. Hence, our neighborhood skyline
based pruning technique can also be used to handle the other
related group centrality maximization problems, such as the
group betweenness maximization. We leave this problem as
an interesting future work.

In Sec. IV-C, we present a general framework with neigh-
borhood skyline based pruning technique to speed up the MCC
problem. Also, our pruning technique is orthogonal to all
algorithms for solving the MCC problem [17]–[27]. In the
experiments, we will take the state-of-the-art algorithm MC-
BRB proposed by Chang [27] as an example to show the
practical performance of our technique for the MCC problem.
As many cohesive subgraph models are defined based on the
neighborhood, our neighborhood skyline pruning technique is
expected to speed up more of the maximum cohesive subgraph
search problems, we leave this problem for future work.

V. EXPERIMENTS

A. Experimental setup
We evaluate the efficiency and effectiveness of the proposed

algorithms. Specifically, we implement the baseline algorithm
to compute the neighborhood skyline, namely, BaseSky (Al-
gorithm 1). We also implement the filter-refine framework,
i.e., FilterRefineSky (Algorithm 3), to solve the neighborhood
skyline search problem. For comparison, we implement two
neighborhood skyline computation algorithms, i.e., Base2Hop

and BaseCSet, as baselines. The main idea of Base2Hop is
to calculate all 2-hop neighbors for each vertex and then
identify neighborhood skyline using the pruning technique and
bloom filter technique in FilterRefineSky. And the BaseCSet
algorithm first invokes FilterPhase (Algorithm 2) to compute
the neighborhood candidate set C for pruning and then per-
forms BaseSky (Algorithm 1) for the vertices in C instead
of vertices in V to derive the neighborhood skyline. Here the
time complexity of BaseCSet is O(dmax

∑
u∈C deg(u)). As

the neighborhood skyline search problem can be generalized
as the set containment join problem, we also compare the
proposed algorithm with the state-of-the-art set containment
join algorithm: LC-Join [32]. In addition, we apply the neigh-
borhood skyline technique to speed up the calculations of
finding groups with the maximum closeness and harmonic
measures and the computation of a maximum clique to show
the effectiveness of our neighborhood skyline. To the best
of our knowledge, the state-of-the-art algorithms for group
closeness maximization, group harmonic maximization and
maximum clique computation problems are Greedy++ pro-
posed in [12], Greedy-H developed in [13] and MC-BRB pre-
sented in [27], respectively. Therefore, we use these three
algorithms: Greedy++, Greedy-H and MC-BRB, as baselines
for comparison. We implement the improved versions of the
three algorithms with the neighborhood skyline pruning tech-
nique, i.e., NeiSkyGC, NeiSkyGH and NeiSkyMC, respectively.
Note that our neighborhood skyline based pruning technique is
orthogonal to all greedy algorithms for addressing the GCM
problem and the GHM problem and all algorithms for the
MCC problem as discussed in Sec. IV-D. We also implement
the BaseTopkMCC and NeiSkyTopkMCC algorithms for find-
ing k maximum cliques. All algorithms are implemented in
C++, and we conduct all experiments on a PC with 3.3GHz
CPU and 128GB memory running Ubuntu 20.04.1. The graph
is stored in the main memory in all experiments.
Datasets. We make use of five real-life graphs from various
domains to conduct the experiments, including web networks,
communication networks, social networks and collaboration
networks. The detailed statistics about these datasets can
be found in Table I, where dmax is the maximum degree
of the graph. All datasets used in the experiments can be
downloaded from http://konect.cc and snap.stanford.edu. We
treat all datasets as undirected graphs.
Parameters. In the algorithms of group centrality maxi-
mization search, i.e., Greedy++, Greedy-H, NeiSkyGC and
NeiSkyGH, the parameter k is selected from the set
{50, 100, 150, 200, 250, 300} with a default value of k = 200.
We will evaluate the performance of the four algorithms with
varying values of k.
Remark. In FilterRefineSky, we only use one hash function
based on bit-wise operations to construct bloom filter struc-
tures. The hash function is given as BFh(v)>>5%BK(u)| =
1 << (h(v)&31) where BK is the number of bytes de-
termined by dmax, which is originally used in [2]. As set
containment query can be answered by bit-wise operations,
such a hash function can be computed very fast.

B. Efficiency testing

Exp-1: Runtime of neighborhood skyline search algo-
rithms. Fig. 3 reports the runtime of LC-Join, BaseSky,
Base2Hop, BaseCSet and FilterRefineSky algorithms on dif-
ferent datasets. Note that both LC-Join and Base2Hop al-
gorithms are out of memory on WikiTalk, thus we denote

592

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DATASETS

Dataset n m dmax Desecription
Notredame 325,731 1,090,109 10,721 Web network
Youtube 1,134,890 2,987,624 28,754 Social network
WikiTalk 2,394,385 4,659,565 100,029 Communication network
Flixster 2,523,386 7,918,801 1,474 Social network
DBLP 1,843,617 8,350,260 2,213 Collaboration network

100

101

102

103

104

INF

Notredame Youtube WikiTalk Flixster DBLP

T
im

e
(s

ec
)

LC-Join
BaseSky

Base2Hop
BaseCSet

FilterRefineSky

Fig. 3. Runtime of various neighborhood skyline computation algorithms

100

101

102

103

104

105

INF

Notredame Youtube WikiTalk Flixster DBLP

M
em

or
y

(M
B

)

Graph size
LC-Join
BaseSky

Base2Hop
BaseCSet

FilterRefineSky

Fig. 4. Memory usages of various neighborhood skyline computation algo-
rithms

their runtime as “INF”. As expected, our FilterRefineSky
algorithm achieves the lowest runtime among all algorithms
over all datasets, which benefits from the powerful pruning
technique and the bloom filter technique. In general, the
running time of FilterRefineSky is 1.6-8.4 times and 4-35
times faster than that of LC-Join and BaseSky on all datasets,
respectively. We can also see that the runtime of Base2Hop
and BaseCSet is between that of BaseSky and FilterRefineSky.
This is because the BaseCSet algorithm is equipped with the
pruning technique based on BaseSky, and Base2Hop needs
to calculate all 2-hop neighbors for each vertex first which
causes additional running time. For example, on Notredame,
FilterRefineSky takes 1 second to output the neighborhood
skyline, while LC-Join and BaseSky consume 9 seconds and
11 seconds, respectively. And Base2Hop and BaseCSet take
8 seconds and 3.4 seconds to calculate the neighborhood
skyline, respectively. Clearly, the runtime of FilterRefineSky
is almost 8 times and 11 times faster than that of LC-Join
and BaseSky. On DBLP, FilterRefineSky takes 22 seconds
to calculate the neighborhood skyline, while LC-Join and
BaseSky consume 56 seconds and 771 seconds respectively
to obtain the results, which is at least 3 times and 29 times
slower than FilterRefineSky. These results demonstrate that
our filter-refine framework FilterRefineSky is substantially
faster than the other baseline algorithms for neighborhood
skyline computation on real-life graphs.

Exp-2: Memory usages of neighborhood skyline search al-
gorithms. The memory costs of LC-Join, BaseSky, Base2Hop,
BaseCSet and FilterRefineSky algorithms are shown in Fig. 4.
Both LC-Join and Base2Hop are out of memory on WikiTalk,
thus we denote their memory usages as “INF”. As can be seen
from Fig. 4, the Base2Hop algorithm occupies the maximum
memory among all algorithms over all datasets as expected
because it needs to maintain not only all 2-hop neighbors
but also the bloom filter data structures for each vertex. The

0M

0.5M

1M

1.5M

2M

2.5M

3M

Notredame Youtube WikiTalk Flixster DBLP

T
he

 n
um

be
r

of
 v

er
tic

es Skyline vertices
Candidate vertices

Total vertices

Fig. 5. Comparisons of the sizes of R, C and V on real-life graphs

100

101

102

103

104

105

0.2 0.4 0.6 0.8 1.0

N
um

be
r

of
 v

er
tic

es

Δp

Skyline vertices
Candidate vertices

Total vertices

(a) The ER graph (vary Δp)

100

101

102

103

104

105

2.6 2.8 3.0 3.2 3.4

N
um

be
r

of
 v

er
tic

es

β

Skyline vertices
Candidate vertices

Total vertices

(b) The PL graph (vary β)

Fig. 6. Comparisons of the sizes of R, C and V on synthetic graphs

memory overheads of BaseSky and BaseCSet are slightly
larger than the graph size on most datasets and LC-Join’s
memory usage is higher than the graph size over all datasets.
This is because the former two algorithms only maintain
several linear data structures, while LC-Join needs to construct
an inverted index on data set S and a prefix tree on query
set Q and the size of Q is almost the same as that of
S in our neighborhood skyline search problem. Also, we
can see that the memory occupancy of FilterRefineSky is
higher than that of BaseSky, but it is still not very large
especially for the graph with a relatively small dmax. This
is because FilterRefineSky needs to maintain the bloom filter
structures for all skyline vertices which takes |C|dmax. Since
|C| is often not very large (see Exp-3), the space overhead
of FilterRefineSky is not very high on real-world graphs.
Compared with LC-Join, FilterRefineSky uses less memory
than LC-Join on most datasets, but achieves lower runtime
of computing neighborhood skyline (see Exp-1). For instance,
on Notredame, the original graph size is 8MB. The memory
usages of BaseSky and BaseCSet on Notredame are both
10MB, while LC-Join and FilterRefineSky occupy 200MB and
120MB memory respectively. And the Base2Hop’s memory
overhead is 4,665MB which is the maximum among all algo-
rithms. In general, FilterRefineSky uses less than 6GB memory
to compute the neighborhood skyline over all datasets, which
is acceptable for a modern computer. These results confirm
our space complexity analysis in Sec. III.

Exp-3: The size of the neighborhood skyline. In this
experiment, we compare the number of skyline vertices with
the graph vertices n and the candidate vertices on all datasets
and the result is illustrated in Fig. 5. As can be seen in Fig. 5,
both the number of skyline vertices and candidate vertices
in all datasets is significantly less than the number of graph
vertices. Also, there is a significant gap between the number
of skyline vertices and that of candidate vertices. For example,
on WikiTalk, the number of skyline vertices equals 194,629,
while the number of candidate vertices and original vertices is
531,773 and 2,394,385, which is at least 2.7 times and 12 times
larger than that of skyline vertices. On Flixster, the sizes of the
neighborhood skyline, neighborhood candidates, and vertices
are 679,201, 869,306 and 2,523,386, respectively.

In addition, we also evaluate the size of the neighborhood
skyline on synthetic graphs. We generate five Erdos-Renyi
(ER) random graphs and five Power-Law (PL) random graphs
by Networkit (https://networkit.github.io/). In ER model, we
fix the number of vertices as 1 ∗ 105 and generate random

593

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

80

100

120

140

160

50 100 150 200 250 300

T
im

e
(s

ec
)

k

Greedy++
NeiSkyGC

(a) Notredame (vary k)

 600

 700

 800

 900

 1000

 1100

50 100 150 200 250 300

T
im

e
(s

ec
)

k

Greedy++
NeiSkyGC

(b) Youtube (vary k)

0.5K

1.0K

1.5K

2.0K

2.5K

3.0K

50 100 150 200 250 300

T
im

e
(s

ec
)

k

Greedy++
NeiSkyGC

(c) WikiTalk (vary k)

6K
7K
8K
9K

10K
11K
12K
13K

50 100 150 200 250 300

T
im

e
(s

ec
)

k

Greedy++
NeiSkyGC

(d) Flixster (vary k)

1K

2K

3K

4K

5K

6K

50 100 150 200 250 300

T
im

e
(s

ec
)

k

Greedy++
NeiSkyGC

(e) DBLP (vary k)

Fig. 7. Comparisons of Greedy++ and NeiSkyGC for group closeness maximization

 25
 30
 35
 40
 45
 50
 55
 60

50 100 150 200 250 300

T
im

e
(s

ec
)

k

Greedy-H
NeiSkyGH

(a) Notredame (vary k)

260

300

340

380

420

50 100 150 200 250 300

T
im

e
(s

ec
)

k

Greedy-H
NeiSkyGH

(b) Youtube (vary k)

 2500

 3000

 3500

 4000

 4500

 5000

50 100 150 200 250 300

T
im

e
(s

ec
)

k

Greedy-H
NeiSkyGH

(c) WikiTalk (vary k)

6.5K

7.5K

8.5K

9.5K

10.5K

50 100 150 200 250 300

T
im

e
(s

ec
)

k

Greedy-H
NeiSkyGH

(d) Flixster (vary k)

 1600

 1800

 2000

 2200

 2400

 2600

50 100 150 200 250 300

T
im

e
(s

ec
)

k

Greedy-H
NeiSkyGH

(e) DBLP (vary k)

Fig. 8. Comparisons of Greedy-H and NeiSkyGH for group harmonic maximization

graphs by varying the expected probability of an edge p =
Δp∗log(n)/n. To generate PL graphs, we also set the number
of vertices as 1 ∗ 105 and vary the growth exponent β. The
results are illustrated in Fig. 6. As can be seen, both the
number of skyline vertices and candidate vertices in ER graphs
is very close to that of graph vertices with varying probability
p. While for PL graphs, both the sizes of neighborhood skyline
and candidate set are substantially less than that of vertex set
for different growth exponent β. The results again confirm that
the number of neighborhood skyline is less than that of vertices
on real-life graphs because real-life graphs are usually power-
law graphs where the degree distribution follows a power-law
distribution [41]. If a graph is closer to an ER graph, then the
size of neighborhood skyline may not be significantly smaller
than that of vertex set. Meanwhile, these results also suggest
that the neighborhood skyline technique can be very effective
for pruning for some downstream graph analysis applications
on real-life graphs (e.g., the group centrality maximization
problems and the maximum clique search problem).

Exp-4: The application of group closeness maximization.
Here we evaluate the Greedy++ and NeiSkyGC with varying
parameter k. Fig. 7 shows the runtime of Greedy++ and
NeiSkyGC on different datasets. Obviously, the runtime of
both Greedy++ and NeiSkyGC increases as k increases for
each dataset as expected. This is because for a larger k, both
the algorithms need to perform more iterations to form a
k-size group, thus increasing the computational costs. From
Fig. 7, we can also observe that on all datasets, the running
time of NeiSkyGC is around 1.35-2.5 times faster than that of
Greedy++ within almost all parameter settings. For example,
when k = 50 on WikiTalk, NeiSkyGC takes 957 seconds to
output all the k vertices with the maximum group closeness,
while Greedy++ consumes 2,487 seconds to yield the group,
which is around 2.5 times slower than that of NeiSkyGC. On
the DBLP dataset, the runtime of Greedy++ and NeiSkyGC
takes 4,159 seconds and 1,930 seconds to output a 50-size
group, respectively. These results indicate that the neigh-
borhood skyline based pruning technique indeed can avoid
calculating the marginal gains for the unpromising vertices
during the search procedure, thus significantly speeding up
the algorithms for the group closeness maximization problem.
These results are also consistent with our analysis in Sec. IV-A.

Exp-5: The application of group harmonic maximization.
We evaluate the running time of Greedy-H and NeiSkyGH
with varying parameter k on different datasets. The results are

 0
 20
 40
 60
 80

 100
 120

1 3 5 7 9

T
im

e
(s

ec
)

k

BaseTopkMCC
NeiSkyTopkMCC

(a) Pokec (vary k)

0
1K
2K
3K
4K
5K
6K
7K

1 3 5 7 9

T
im

e
(s

ec
)

k

BaseTopkMCC
NeiSkyTopkMCC

(b) Orkut (vary k)

Fig. 9. Comparisons of BaseTopkMCC and NeiSkyTopkMCC

depicted in Fig. 8. As can be seen, the runtime of both Greedy-
H and NeiSkyGH increases with the increasing k for each
dataset because they need to explore more vertices to form a
group for a larger k. In Fig. 8, the running time of NeiSkyGH
is around 1.4-1.85 times faster than that of Greedy-H within
almost all parameter settings overall datasets as expected.
For instance, on WikiTalk, NeiSkyGH takes 2,503 seconds to
output a 100-size group with the maximum group harmonic
measure, while Greedy-H consumes 4,646 seconds which
is 1.85 times slower than that of NeiSkyGH. These results
confirm that the proposed neighborhood skyline technique can
be used to reduce the number of marginal gain calculations in
the group harmonic maximization search, which is consistent
with our analysis in Sec. IV-B.

Exp-6: The application of maximum clique computation.
We evaluate the BaseTopkMCC and NeiSkyTopkMCC algo-
rithms with varying parameter k on two large graphs: Pokec
and Orkut. The result is depicted in Fig. 9, where the runtime
includes the time of calculating the neighborhood skyline.
Note that in the case of k = 1, the BaseTopkMCC and
NeiSkyTopkMCC algorithms degenerate to MC-BRB and
NeiSkyMC, respectively. From Fig. 9, we can see that the run-
time of BaseTopkMCC and NeiSkyTopkMCC increases as k
increases as expected. Moreover, NeiSkyTopkMCC is slightly
slower than BaseTopkMCC at k = 1, and when k ≥ 2, the run-
time of NeiSkyTopkMCC is less than that of BaseTopkMCC.
This is because when k = 1, NeiSkyTopkMCC needs to calcu-
late the neighborhood skyline first, while BaseTopkMCC can
output the maximum clique in G directly. For a larger k, except
for the first round, NeiSkyTopkMCC only computes maximum
cliques for vertices in the neighborhood skyline and maintains
the skyline vertices. Compared to BaseTopkMCC, the pruning
benefits of NeiSkyTopkMCC can dominate the costs for calcu-
lating and maintaining the neighborhood skyline. For example,
when k = 5, NeiSkyTopkMCC takes 4696 seconds to calculate
k maximum cliques in Orkut, while BaseTopkMCC consumes

594

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

0

3K

6K

9K

12K

15K

18K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

n

BaseSky
FilterRefineSky

(a) LiveJournal (vary n)

0

3K

6K

9K

12K

15K

18K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

ρ

BaseSky
FilterRefineSky

(b) LiveJournal (vary ρ)

Fig. 10. Scalability of BaseSky and FilterRefineSky

0

20K

40K

60K

80K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

n

Greedy++
NeiSkyGC

(a) LiveJournal (vary n)

20K

40K

60K

80K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

ρ

Greedy++
NeiSkyGC

(b) LiveJournal (vary ρ)

Fig. 11. Scalability of Greedy++ and NeiSkyGC

0

10K

20K

30K

40K

50K

60K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

n

Greedy-H
NeiSkyGH

(a) LiveJournal (vary n)

10K

20K

30K

40K

50K

60K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

ρ

Greedy-H
NeiSkyGH

(b) LiveJournal (vary ρ)

Fig. 12. Scalability of Greedy-H and NeiSkyGH

6717 seconds which is clearly slower than NeiSkyTopkMCC.
These results show that compared to the baseline method,
NeiSkyTopkMCC has no obvious advantage in finding one
maximum clique, but it is more efficient to find top-k maxi-
mum cliques.

Exp-7: Scalability testing. Here we perform experiments to
evaluate the scalability of our algorithms. In particular, we
vary the number of vertices and density of the original graph to
yield four subgraphs for every dataset and compare the running
time of BaseSky and FilterRefineSky on these subgraphs.
The experimental results on a large graph LiveJournal are
depicted in Fig. 10, and the results on the other datasets
are consistent. Clearly, with varying n or ρ, the runtime
of FilterRefineSky increases very smoothly. In contrast, the
running time of BaseSky changes more sharply. Additionally,
the FilterRefineSky algorithm is significantly faster than the
BaseSky algorithm over all parameter settings, which confirms
the findings in Exp-1 again.

We also evaluate the scalability of group centrality max-
imization algorithms and maximum clique search algorithm.
The results on LiveJournal of group closeness maximization
algorithms, i.e., Greedy++ and NeiSkyGC, are illustrated in
Fig. 11; the results on LiveJournal of group harmonic maxi-
mization algorithms, Greedy-H and NeiSkyGH, are shown in
Fig. 12; and Table II reports the running time of MC-BRB and
NeiSkyMC algorithms on LiveJournal for maximum clique
computation problem. Similar results can also be observed on
the other datasets. From Fig. 11, we can see that the runtime
of NeiSkyGC increases relatively smoothly with increasing n
or ρ compared to that of Greedy++. Also, NeiSkyGC is sig-
nificantly better than Greedy++ with all parameter settings as
expected, which is consistent with our previous experiments.
For the Greedy-H and NeiSkyGH algorithms, the runtime of
NeiSkyGH also changes smoothly compared to that of Greedy-
H when varying n or ρ. Furthermore, consistent with our
previous findings, NeiSkyGH is superior to Greedy-H under
all experimental settings. From Table II, we can see that both

TABLE II
SCALABILITY OF MC-BRB AND NeiSkyMC ON LiveJournal

vary n MC-BRB(μm) NeiSkyMC (μm) vary ρ MC-BRB(μm) NeiSkyMC (μm)
20% 34,664 33,473 20% 976,505 953,605
40% 148,730 137,087 40% 3,022,167 289,9143
60% 404,485 401,014 60% 13,178,465 12,469,524
80% 627,427 617,582 80% 4,871,153,877 4,590,932,416
100% 1,063,380 1,055,273 100% 1,063,380 1,055,273

(a) Karate (b) Bombing

Fig. 13. Case studies on Karate and Bombing (red vertex: the vertex in the
neighborhood skyline set)

the running time of NeiSkyMC and MC-BRB increases as n
increases because more vertices would lead in more search
branches in the two branch-and-bound based algorithms. When
varying density ρ, the running time of NeiSkyMC and MC-
BRB do not increase with increasing ρ. This is because MC-
BRB (NeiSkyMC) algorithm is equipped with many powerful
pruning techniques and non-trivial heuristic search methods,
thus can prune a lot of branches for a graph with larger
density and reduce the running time. Consistent with our
previous finding, NeiSkyMC is faster than MC-BRB over all
datasets with varying n or ρ. For example, when ρ equals 80%,
NeiSkyMC takes 4590.932 seconds to compute a maximum
clique, while MC-BRB consumes 4871.153 seconds. These
results demonstrate the high scalability of our group centrality
maximization algorithms and maximum clique computation
algorithm equipped with the neighborhood skyline pruning.

C. Case study
We conduct case studies on two tiny networks, i.e., Karate

and Bombing, to show the effectiveness of the neighborhood
skyline. The Karate dataset is the famous Zachary karate club
network which contains 34 nodes and 78 edges. And the
Bombing dataset with 64 nodes and 243 edges is the network
of contacts between suspects involved in the train bomb-
ing of Madrid on 2004. Both two datasets are downloaded
from the website https://konect.cc/networks. We perform our
FilterRefineSky algorithm to find the neighborhood skyline
of Karate and Bombing. The vertices colored red in Fig. 13
are the vertices belonging to the neighborhood skyline. From
Fig. 13, we can see that there are 15 nodes (44%) and 20
nodes (31%) in the neighborhood skyline sets of Karate and
Bombing, respectively. Clearly, the size of neighborhood sky-
line is significantly smaller than the original graphs. Moreover,
the nodes with smaller degrees are more easily dominated by
other vertices. This is because the distribution of degrees for
real-world graphs generally obeys a power-law distribution,
which means there are a lot of vertices with a low degree
and a few vertices with a high degree. Hence, the size of
neighborhood skyline in real-life networks is generally not
very large.

VI. RELATED WORK

Set containment query. Given a query Q and a dataset S,
the problem of set containment query is to find all elements
in S that are contained by Q, which has been investigated in a

595

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

lot of works [42]–[45]. For example, Helmer et al. compared
the different indexes and confirmed the great performance of
inverted list for set-valued attributes of low cardinality [42].
Terrovitis et al. developed an OIF index which is a combina-
tion of the inverted index and B-tree and proposed index-based
query processing algorithms to address the queries for subset,
set-equality and superset queries [43]. Zhu et al. presented an
LSH ensemble index structure and a query algorithm which
uses minwise hashing and domain partitioning techniques to
handle the data volume and skew [44]. Yang et al. proposed
two selectivity estimation techniques, i.e., OT-Sampling and
DCSampling, to track the challenges of set containment search
[45]. In addition, as an important relationship, other studies
based on set containment have also received significant at-
tention in recent years, such as set containment join [28]–[33]
and set similarity join [46]–[50]. Based on set containment, the
neighborhood skyline search problem is a subset of the above
problems since the containment relations only exist between a
vertex and its 2-hop reachable neighbors rather than all vertex
pairs. To the best of our knowledge, we are the first to propose
the concept of neighborhood skyline, and to study the problem
of finding skylines vertices in graphs.

Skyline computation. The first research on skyline compu-
tation focused on computational theory. Kung et al. studied
the skyline search problem for d-dimensional vectors, and
developed an algorithm with time complexity of O(n log n)
for d = 2, 3 [51]. Borzsonyi et al. were the first to integrate
the skyline operation into a database system in the field of
database [52]. After the seminal work, skyline computation has
gained considerable attention, leading to a plethora of studies
aimed at finding the skyline with different definitions [53]–
[58]. Recently, Liu et al. introduced the concept of skyline
diagram, which can precomputation of three different skyline
queries including quadrant, global, and dynamic skyline [56].
Li et al. proposed a skyline community search algorithm with
O(s(m + n)) time complexity for a multi-valued graph in
the case of 2-dimension. They also developed an efficient
space-partition algorithm for the high-dimensional case [57].
Li et al. presented a novel model called skyline dense group
for road-social networks which requires both social and spatial
cohesiveness [58]. In this work, the defined neighborhood
skyline differs fundamentally from previous skyline concepts,
rendering existing algorithms cannot be used to solve our
neighborhood skyline search problem. Moreover, most of these
existing solutions for skyline problems are based on divide-
and-conquer, while we propose a filter-and-refine framework
to address our problem which is totally different from the
previous algorithms.

Group centrality maximization. The group centrality maxi-
mization problem aims to find the group of k vertices with the
maximum group centrality metrics, which is typically NP-hard
[11]. In particular, our work is closely related to the problems
of group closeness maximization (a.k.a GCM) and group
harmonic maximization (a.k.a GHM). Various algorithms have
been developed to solve the GCM problem recently [11]–[13],
[39]. Chen et al. proposed a greedy approximation algorithm
as well as an alternative heuristic sampling algorithm to further
improve the efficiency [11]. Bergamin et al. designed non-
trivial techniques to speed up the greedy algorithm without los-
ing theoretical, which can be used to handle massive networks
with hundreds of millions of edges. Angriman et al. introduced
new heuristics algorithms for group closeness maximization

[39], and then provided approximation guarantees for the
greedy algorithm [13]. In addition, Zhao et al. investigated
the external-memory algorithm to address the GCM problem
[59]. For the GHM problem, Angriman et al., for the first
time, studied this problem and proved that the GHM problem
on undirected graphs can be addressed by a constant-factor
approximation algorithm [13]. To the best of our knowledge,
we are the first to apply the neighborhood skyline pruning
to speed up the GCM and GHM problems. In particular, our
pruning technique is orthogonal to all greedy algorithms for
solving the GCM and GHM problems. Moreover, the pruning
derived from our neighborhood skyline is suitable for all group
centrality maximization problems in which the group centrality
measure is based on the shortest-path distance.

Maximum clique computation. Our work is highly related
to the maximum clique computation, which is NP-hard [40].
Extensive algorithms are proposed for the maximum clique
computation including exact algorithms [17]–[27] and heuris-
tic algorithms [21], [22], [27]. All the exact solutions are
variants of the branch-and-bound method which are equipped
with various bounding techniques to prune a branch if its
upper bound is no greater than the currently largest clique.
For heuristic algorithms, the maximum degree-based heuristic
method [21] is proposed whose main idea is to greedily choose
the vertex with maximum degree in the candidate set to extend
the current clique. Subsequently, the degeneracy order-based
heuristic method is developed by selecting the vertex with the
highest rank with the degeneracy ordering in each round [22].
The state-of-the-art algorithm for maximum clique computa-
tion is MC-BRB [27], which finds the result by seeking the k-
clique over small dense subgraphs rather than the whole sparse
graph. The authors also developed a branch reduce-and-bound
framework for finding k-clique and a heuristic algorithm with
near-linear time to output a near-maximum clique. In this
work, we apply the neighborhood skyline pruning to speed
up the MC-BRB algorithm, which can be considered as a
new state-of-the-art algorithm. Also, our pruning technique is
orthogonal to all branch-and-bound algorithms for solving the
maximum clique computation problem.

VII. CONCLUSION

In this paper, we introduce a concept called neighborhood
skyline, and study a novel problem of neighborhood sky-
line search on graphs. To tackle this problem, we propose
a filter-refine search framework, FilterRefineSky, which can
efficiently calculate the neighborhood skyline in a graph.
To show the effectiveness of our technique, we study two
applications, i.e., group closeness maximization and group
harmonic maximization, and prove that our neighborhood
skyline can be used to expedite the computation of the group
centrality maximization problems, in which the centrality
measure is based on shortest-path distance. Moreover, we
show that the neighborhood skyline technique can accelerate
the maximum clique computation as well. To evaluate the
proposed algorithms, we conduct extensive experiments on
real-world datasets and the results confirm the efficiency,
effectiveness, and scalability of our algorithms.
Acknowledgement. This work was partially supported by (i)

National Key Research and Development Program of China

2021YFB3301301, (ii) NSFC Grants U2241211, 62072034,

U1809206, and (iii) CCF-Huawei Populus Grove Fund. Rong-Hua

Li and Guoren Wang are corresponding authors of this paper.

596

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” in Proceedings
of SIGMOD, pp. 349–360, ACM, 2013.

[2] H. Wei, J. X. Yu, C. Lu, and R. Jin, “Reachability querying: An
independent permutation labeling approach,” Proceedings of VLDB
Endow., vol. 7, no. 12, pp. 1191–1202, 2014.

[3] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
nature, vol. 435, no. 7043, pp. 814–818, 2005.

[4] L. Chang, W. Li, and W. Zhang, “Computing A near-maximum indepen-
dent set in linear time by reducing-peeling,” in Proceedings of SIGMOD,
pp. 1181–1196, ACM, 2017.

[5] C. Piao, W. Zheng, Y. Rong, and H. Cheng, “Maximizing the reduction
ability for near-maximum independent set computation,” Proceedings of
VLDB Endow., vol. 13, no. 12, pp. 2466–2478, 2020.

[6] W. Li, M. Qiao, L. Qin, Y. Zhang, L. Chang, and X. Lin, “Scaling
distance labeling on small-world networks,” in Proceedings of SIGMOD,
pp. 1060–1077, ACM, 2019.

[7] U. Brandes, M. Heine, J. Müller, and M. Ortmann, “Positional
dominance: Concepts and algorithms,” in Proceedings of CALDAM,
vol. 10156, pp. 60–71, Springer, 2017.

[8] N. V. Mahadev and U. N. Peled, Threshold graphs and related topics.
Elsevier, 1995.

[9] S. D. Nikolopoulos and C. Papadopoulos, “The number of spanning
trees in k n-complements of quasi-threshold graphs,” Graphs and
Combinatorics, vol. 20, no. 3, pp. 383–397, 2004.

[10] M. Fürer, “Efficient computation of the characteristic polynomial of a
threshold graph,” Theor. Comput. Sci., vol. 657, pp. 3–10, 2017.

[11] C. Chen, W. Wang, and X. Wang, “Efficient maximum closeness
centrality group identification,” in Proceedings of Australasian Database
Conference, pp. 43–55, Springer, 2016.

[12] E. Bergamini, T. Gonser, and H. Meyerhenke, “Scaling up group
closeness maximization,” in Proceedings of ALENEX, pp. 209–222,
SIAM, 2018.

[13] E. Angriman, R. Becker, G. D’Angelo, H. Gilbert, A. van der
Grinten, and H. Meyerhenke, “Group-harmonic and group-closeness
maximization–approximation and engineering,” in Proceedings of
ALENEX, pp. 154–168, SIAM, 2021.

[14] S. Dolev, Y. Elovici, R. Puzis, and P. Zilberman, “Incremental deploy-
ment of network monitors based on group betweenness centrality,” Inf.
Process. Lett., vol. 109, no. 20, pp. 1172–1176, 2009.

[15] M. H. Chehreghani, A. Bifet, and T. Abdessalem, “An in-depth com-
parison of group betweenness centrality estimation algorithms,” in IEEE
Big Data, 2018.

[16] D. Dinler and M. K. Tural, “Faster computation of successive bounds on
the group betweenness centrality,” Networks, vol. 71, no. 4, pp. 358–380,
2018.

[17] R. Carraghan and P. M. Pardalos, “An exact algorithm for the maximum
clique problem,” Operations Research Letters, vol. 9, no. 6, pp. 375–
382, 1990.

[18] C.-M. Li, Z. Fang, and K. Xu, “Combining maxsat reasoning and
incremental upper bound for the maximum clique problem,” in 2013
IEEE 25th International Conference on Tools with Artificial Intelligence,
pp. 939–946, IEEE, 2013.

[19] C.-M. Li, H. Jiang, and F. Manyà, “On minimization of the number
of branches in branch-and-bound algorithms for the maximum clique
problem,” Computers & Operations Research, vol. 84, pp. 1–15, 2017.

[20] P. M. Pardalos and J. Xue, “The maximum clique problem,” Journal of
global Optimization, vol. 4, no. 3, pp. 301–328, 1994.

[21] B. Pattabiraman, M. Patwary, M. Ali, A. H. Gebremedhin, W.-k. Liao,
and A. Choudhary, “Fast algorithms for the maximum clique problem on
massive sparse graphs,” in International Workshop on Algorithms and
Models for the Web-Graph, pp. 156–169, Springer, 2013.

[22] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin, “Parallel maximum
clique algorithms with applications to network analysis,” SIAM Journal
on Scientific Computing, vol. 37, no. 5, pp. C589–C616, 2015.

[23] P. San Segundo, A. Lopez, and P. M. Pardalos, “A new exact maximum
clique algorithm for large and massive sparse graphs,” Computers &
Operations Research, vol. 66, pp. 81–94, 2016.

[24] E. Tomita, “Efficient algorithms for finding maximum and maximal
cliques and their applications,” in International workshop on algorithms
and computation, pp. 3–15, Springer, 2017.

[25] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki, “A
simple and faster branch-and-bound algorithm for finding a maximum
clique,” in International Workshop on Algorithms and Computation,
pp. 191–203, Springer, 2010.

[26] J. Xiang, C. Guo, and A. Aboulnaga, “Scalable maximum clique com-
putation using mapreduce,” in 2013 IEEE 29th International Conference
on Data Engineering (ICDE), pp. 74–85, IEEE, 2013.

[27] L. Chang, “Efficient maximum clique computation over large sparse
graphs,” in Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD 2019, Anchorage,
AK, USA, August 4-8, 2019, pp. 529–538, ACM, 2019.

[28] J. Yang, W. Zhang, S. Yang, Y. Zhang, and X. Lin, “Tt-join: Efficient set
containment join,” in Proceedings of ICDE, pp. 509–520, IEEE, 2017.

[29] J. Yang, W. Zhang, S. Yang, Y. Zhang, X. Lin, and L. Yuan, “Efficient
set containment join,” VLDB Journal., vol. 27, no. 4, pp. 471–495, 2018.

[30] Y. Luo, G. H. Fletcher, J. Hidders, and P. De Bra, “Efficient and
scalable trie-based algorithms for computing set containment relations,”
in Proceedings of ICDE, pp. 303–314, IEEE, 2015.

[31] A. Kunkel, A. Rheinländer, C. Schiefer, S. Helmer, P. Bouros, and
U. Leser, “Piejoin: towards parallel set containment joins,” in Proceed-
ings of SSDBM, pp. 1–12, 2016.

[32] D. Deng, C. Yang, S. Shang, F. Zhu, L. Liu, and L. Shao, “Lcjoin:
Set containment join via list crosscutting,” in Proceedings of ICDE,
pp. 362–373, IEEE, 2019.

[33] C. Yang, D. Deng, S. Shang, F. Zhu, L. Liu, and L. Shao, “Internal and
external memory set containment join,” VLDB Journal., vol. 30, no. 3,
pp. 447–470, 2021.

[34] Q. Zhang, R.-H. Li, H. Qin, Y. Dai, Y. Yuan, and G. Wang, “Neighbor-
hood skyline on graphs: Concepts, algorithms and applications,” Full-
version: https://github.com/QiZhang1996/neighborhoodskylines/blob/
main/setcontain full nc.pdf , 2022.

[35] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[36] M. G. Everett and S. P. Borgatti, “The centrality of groups and classes,”
The Journal of mathematical sociology, vol. 23, no. 3, pp. 181–201,
1999.

[37] A. Clark, L. Bushnell, and R. Poovendran, “A supermodular optimization
framework for leader selection under link noise in linear multi-agent
systems,” IEEE TAC, vol. 59, no. 2, pp. 283–296, 2013.

[38] S. Banerjee, M. Jenamani, and D. K. Pratihar, “A survey on influence
maximization in a social network,” Knowledge and Information Systems,
vol. 62, no. 9, pp. 3417–3455, 2020.

[39] E. Angriman, A. van der Grinten, and H. Meyerhenke, “Local search
for group closeness maximization on big graphs,” in IEEE Big Data,
pp. 711–720, IEEE, 2019.

[40] R. M. Karp, “Reducibility among combinatorial problems,” in Proceed-
ings of a symposium on the Complexity of Computer Computations,
held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series,
pp. 85–103, Plenum Press, New York, 1972.

[41] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[42] S. Helmer and G. Moerkotte, “A performance study of four index
structures for set-valued attributes of low cardinality,” VLDB Journal.,
vol. 12, no. 3, pp. 244–261, 2003.

[43] M. Terrovitis, P. Bouros, P. Vassiliadis, T. K. Sellis, and N. Mamoulis,
“Efficient answering of set containment queries for skewed item distri-
butions,” in Proceedings of EDBT, pp. 225–236, ACM, 2011.

[44] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller, “LSH ensemble:
Internet-scale domain search,” Proceedings of VLDB Endow., vol. 9,
no. 12, pp. 1185–1196, 2016.

[45] Y. Yang, W. Zhang, Y. Zhang, X. Lin, and L. Wang, “Selectivity
estimation on set containment search,” Data Sci. Eng., vol. 4, no. 3,
pp. 254–268, 2019.

[46] J. Wang, G. Li, and J. Feng, “Can we beat the prefix filtering?: an
adaptive framework for similarity join and search,” in Proceedings of
SIGMOD, pp. 85–96, ACM, 2012.

[47] D. Deng, G. Li, H. Wen, and J. Feng, “An efficient partition based
method for exact set similarity joins,” Proceedings of VLDB Endow.,
vol. 9, no. 4, pp. 360–371, 2015.

[48] W. Mann, N. Augsten, and P. Bouros, “An empirical evaluation of set
similarity join techniques,” Proceedings of VLDB Endow., vol. 9, no. 9,
pp. 636–647, 2016.

[49] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang, “Leveraging set
relations in exact set similarity join,” Proceedings of VLDB Endow.,
vol. 10, no. 9, pp. 925–936, 2017.

[50] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang, “Leveraging set
relations in exact and dynamic set similarity join,” VLDB Journal.,
vol. 28, no. 2, pp. 267–292, 2019.

[51] H.-T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a
set of vectors,” Journal of the ACM (JACM), vol. 22, no. 4, pp. 469–476,
1975.

[52] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in
Proceedings of ICDE, pp. 421–430, IEEE, 2001.

[53] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain
data,” in Proceedings of VLDB Endow., pp. 15–26, Citeseer, 2007.

[54] C. Sheng and Y. Tao, “On finding skylines in external memory,” in
Proceedings of PODS, pp. 107–116, 2011.

[55] A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das, “Discovering
the skyline of web databases,” arXiv preprint arXiv:1512.02138, 2015.

[56] J. Liu, J. Yang, L. Xiong, J. Pei, and J. Luo, “Skyline diagram: Finding
the voronoi counterpart for skyline queries,” in Proceedings of ICDE,
pp. 653–664, IEEE Computer Society, 2018.

597

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

[57] R. Li, L. Qin, F. Ye, G. Wang, J. X. Yu, X. Xiao, N. Xiao, and
Z. Zheng, “Finding skyline communities in multi-valued networks,”
VLDB Journal., vol. 29, no. 6, pp. 1407–1432, 2020.

[58] Q. Li, Y. Zhu, and J. X. Yu, “Skyline cohesive group queries in large
road-social networks,” in Proceedings of ICDE, pp. 397–408, IEEE,

2020.
[59] J. Zhao, J. C. S. Lui, D. Towsley, and X. Guan, “Measuring and

maximizing group closeness centrality over disk-resident graphs,” in
Proceedings of WWW, pp. 689–694, ACM, 2014.

598

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:58:12 UTC from IEEE Xplore. Restrictions apply.

