
IEE
E P

ro
of

1 Signed Clique Search in Signed Networks:
2 Concepts and Algorithms
3 Rong-Hua Li , Qiangqiang Dai, Lu Qin , Guoren Wang ,

4 Xiaokui Xiao , Jeffrey Xu Yu , and Shaojie Qiao

5 Abstract—Mining cohesive subgraphs from a network is a fundamental problem in network analysis. Most existing cohesive subgraph

6 models are mainly tailored to unsigned networks. In this paper, we study the problem of seeking cohesive subgraphs in a signed

7 network, in which each edge can be positive or negative, denoting friendship or conflict, respectively. We propose a novel model, called

8 maximal ða; kÞ-clique, that represents a cohesive subgraph in signed networks. Specifically, a maximal ða; kÞ-clique is a clique in which

9 every node has at most k negative neighbors and at least dake positive neighbors (a � 1). We show that the problem of enumerating all

10 maximal ða; kÞ-cliques in a signed network is NP-hard. To enumerate all maximal ða; kÞ-cliques efficiently, we first develop an elegant

11 signed network reduction technique to significantly prune the signed network. Then, we present an efficient branch and bound

12 enumeration algorithm with several carefully-designed pruning rules to enumerate all maximal ða; kÞ-cliques in the reduced signed

13 network. In addition, we also propose an efficient algorithm with three novel upper-bounding techniques to find the maximum

14 ða; kÞ-clique in a signed network. The results of extensive experiments on five large real-life datasets demonstrate the efficiency,

15 scalability, and effectiveness of our algorithms.

16 Index Terms—Signed clique, signed network, maximal clique enumeration, branch and bound algorithm

Ç

17 1 INTRODUCTION

18 REAL-LIFE networks, such as social networks and web
19 graphs, typically involve cohesive subgraph structures.
20 Discovering cohesive subgraphs in a network is a funda-
21 mental problem in network analysis, and is useful in
22 numerous applications including community discovery [1],
23 [2], protein complex mining [3], spam detection [4], and so
24 on.
25 In applications such as trust networks analysis [5], opin-
26 ion networks mining [6], online social networks analysis [6],
27 as well as protein-protein interaction (PPI) networks analy-
28 sis [3], the edges in these networks can be either positive
29 representing friendship, or negative representing antago-
30 nism. Finding cohesive subgraphs in these signed networks
31 can be used to detect community structures [7], study trust
32 dynamics [5], or identify protein complexes [4], etc. Unfor-
33 tunately, most existing cohesive subgraph models, such as

34maximal clique [8], k-core [9], and k-truss [10], ignore the
35signed edge information that might be inappropriate for
36characterizing the cohesive subgraphs in a signed network.
37Recently, Giatsidis et al. [5] proposed a signed core
38model to capture the signed edge information in a cohesive
39subgraph. The signed core is a maximal subgraph C such
40that each node in C has at least b positive neighbors and
41also has more than g negative neighbors, where b and g are
42two integer parameters. The main deficiencies of the signed
43core model are twofold. First, a signed core could contain
44too many negative edges. Second, the signed core may be
45not very compact when b and g are small.
46Intuitively, a cohesive subgraph in the signed network
47should be densely-connected. It should involve many posi-
48tive edges, but not too many negative edges. For example,
49in applications related to community detection [7] or com-
50munity search [1], we may wish to find a community such
51that most links have positive edges and few negative edges.
52Based on this intuition, we have developed a novel cohesive
53subgraph model for signed networks, called maximal
54ða; kÞ-clique. A maximal ða; kÞ-clique satisfies three proper-
55ties: (i) it is a clique in which every pair of nodes has a con-
56nection; (ii) every node in a maximal ða; kÞ-clique has at
57most k negative neighbors (foes) and at least dake (a � 1)
58positive neighbors (friends); and (iii) it is a maximal sub-
59graph that meets (i) and (ii). Clearly, the maximal ða; kÞ-
60clique can limit the number of negative edges and it is also
61compact in terms of the clique property. In the experiments,
62we show that the maximal ða; kÞ-clique model is able to
63identify interesting cohesive subgraphs in many signed net-
64work analysis applications. This type of cohesive subgraph
65could be very useful for discovering trust communities in a

� R.-H. Li, Q. Dai, and G. Wang are with the Beijing Institute of Technology,
Beijing 100081, China. E-mail: lironghuascut@gmail.com, qiang56734@163.
com,wanggrbit@126.com.

� L. Qin is with the University of Technology Sydney, Ultimo, NSW 2007,
Australia. E-mail: Lu.Qin@uts.edu.au.

� X. Xiao is with the National University of Singapore, Singapore 119077.
E-mail: xkxiao@nus.edu.sg.

� J.X. Yu is with the Chinese University of Hong Kong, Shatin, NT, Hong Kong.
E-mail: yu@se.cuhk.edu.hk.

� S. Qiao is with the Chengdu University of Information Technology,
Chengdu, Sichuan Sheng 610225, China. E-mail: sjqiao@cuit.edu.cn.

Manuscript received 9 Sept. 2018, accepted 4 Mar. 2019, Date of publication
0 . 0000; date of current version 0 . 0000.
(Corresponding author: Guoren Wang.)
Recommended for acceptance by P. K. Chrysanthis, B. C. Ooi, and J. Dittrich.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2019.2904569

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019 1

1041-4347� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

IEE
E P

ro
of

66 trust network, revealing interesting protein complexes in
67 signed PPI networks, and for detecting strongly-cooperative
68 research groups in collaboration networks.
69 Trust Community Mining. In a trust network, such as
70 Epinions (www.epinions.com), users can express trust or
71 distrust of other users. By finding the maximal ða; kÞ-
72 cliques, the trust communities with the most users who
73 have rated each other positively could be identified. After
74 discovering those trust communities, a company could per-
75 form powerful viral marketing to promote their products by
76 influencing just a small portion of its users because most of
77 those users trust each other.
78 Protein Complex Discovery. In a signed PPI network, a
79 protein complex can be represented as a densely-connected
80 subgraph, in which most protein-protein interactions
81 exhibit a positive relationship (e.g., a common function rela-
82 tionship) and few interactions show a negative relationship
83 (e.g., inhibition relationships) [3]. By identifying the maxi-
84 mal ða; kÞ-cliques, the protein complexes can be discovered
85 in the signed PPI network, as the model clearly represents a
86 cohesive subgraph containing many positive edges and few
87 negative edges.
88 Finding Strongly Cooperative Research Groups. To identify
89 strongly cooperative research groups in a co-authorship net-
90 work (e.g., DBLP), the network could be modeled as a
91 signed network, where the positive and negative edges rep-
92 resent strong and weak cooperative relationships. For exam-
93 ple, if two researchers co-author many/few papers, the
94 cooperative relationship between them can be modeled as a
95 positive/negative edge. By seeking the maximal ða; kÞ-cli-
96 ques, strongly cooperative groups can be discovered as the
97 model consists of many strong ties and only few weak links.
98 Contributions. In this paper, we formulate and provide
99 efficient solutions for two fundamental problems of seeking

100 cohesive subgraphs in a signed network: (i) enumerating
101 all maximal ða; kÞ-cliques, and (ii) finding the maximum
102 ða; kÞ-clique. The main contributions of this paper are sum-
103 marized as follows.
104 New model. We propose a novel maximal ða; kÞ-clique
105 model that represents a cohesive subgraph in signed net-
106 works. We show that the classic maximal clique is a special
107 case of the maximal ða; kÞ-clique. Since the classic maximal
108 clique enumeration problem is NP-hard, our problems are
109 also NP-hard.
110 Novel algorithms. To compute the maximal ða; kÞ-cliques,
111 we develop an elegant signed graph reduction technique to
112 substantially prune the signed network. We show that our
113 signed graph reduction algorithm takes OðdmÞ and uses
114 Oðmþ nÞ space, where d denotes the arboricity, m is the
115 number of edges, and n denotes the number of nodes of the
116 graph. Note that the arboricity d is bounded by Oð ffiffiffiffiffi

m
p Þ [11],

117 and it is often much smaller than such a worst-case bound
118 in real-life graphs [12]. In the reduced signed network, we
119 propose a new branch and bound enumeration algorithm
120 with several carefully-designed pruning strategies to effi-
121 ciently enumerate all maximal ða; kÞ-cliques. We also
122 develop an efficient algorithm with three novel upper-
123 bounding techniques to identify the maximum ða; kÞ-clique
124 in a signed network.
125 Extensive experimental results. We conduct comprehen-
126 sive experimental studies to evaluate the proposed algorithms

127using five large real-world datasets. The results show that our
128algorithm takes less than 1,000 seconds to enumerate all maxi-
129mal ða; kÞ-cliques under most parameter settings in a signed
130network with more than 1.6 million nodes and 30.6 million
131edges (in the same dataset, our algorithm takes less than
132100 seconds to find the maximum ða; kÞ-clique). Based on the
133traditional conductance [13] metric, we introduce a new and
134intuitive metric, called signed conductance, to measure the
135quality of a cohesive subgraph. We show that the proposed
136model consistently outperforms the baselines in terms of the
137signed conductance metric. We also examine several case
138studies to evaluate the effectiveness of our model. The results
139indicate that our model is able to identify intuitive and
140compact communities in signed networks that cannot be
141found by the baselinemodels.
142Organization. Section 2 introduces the maximal ða; kÞ-
143clique model. The signed graph reduction technique is pro-
144posed in Section 3. Section 4 presents the branch and bound
145enumeration algorithm. The maximum ða; kÞ-clique search
146algorithm is shown in Section 5. The experimental results
147are reported in Section 6. We review the related work in
148Section 7, and conclude this work in Section 8.

1492 PROBLEM STATEMENT

150Let G ¼ ðV;EÞ be an undirected signed network, where V
151(jV j ¼ n) and E (jEj ¼ m) denote the set of nodes and edges
152respectively. In G, each edge e 2 E is associated with a label
153either “þ” or “�”. An edge with label “þ” denotes a positive
154edge, while an edge with label “�” denotes a negative edge.
155Let Nu , fvjðu; vÞ 2 Eg be the set of neighbor nodes of u,

156Nþu , fvjðu; vÞ 2 E, and ðu; vÞ is a positive edgeg be the set of

157positive neighbors, andN�u , fvjðu; vÞ 2 E, and ðu; vÞ is a neg-
158ative edgeg be the set of negative neighbors. Let duðGÞ ¼ jNuj,
159dþu ðGÞ ¼ jNþu j, d�u ðGÞ ¼ jN�u j, be the degree, the positive

160degree, and the negative degree of u inG respectively. A sub-
161graph H ¼ ðVH;EHÞ is called an induced subgraph of G if

162VH � V and EH ¼ fðu; vÞjðu; vÞ 2 E; u 2 VH; v 2 VHg. An

163induced subgraphH ofG is a clique if every pair of nodes in

164H has an edge, i.e., ðu; vÞ 2 E for any u 2 H and v 2 H. Given
165a signed networkG and an integer k, a k-core, denoted byCk,
166is an induced subgraph ofG such that every node in Ck has a
167degree no less than k, i.e., duðCkÞ � k for every u 2 Ck [9]. A
168maximal k-core Ck is a k-core such that there is no k-core C0k
169inG that containsCk [9].
170Intuitively, an interesting cohesive subgraph in signed
171networks should be densely connected. It should consist of
172many positive edges and not contain too many negative
173edges. Based on this intuition, we propose a new model,
174called maximal ða; kÞ-clique, to describe the cohesive sub-
175graphs in a signed network.

176Definition 1. (ða; kÞ-clique) Given a signed graph G, a positive
177real value a (a � 1), and an integer k, an ða; kÞ-clique is an
178induced subgraph C that satisfies the following constraints.

179� Clique constraint: C is a clique in G;
180� Negative-edge constraint: for each u 2 C, d�u ðCÞ � k;

181� Positive-edge constraint: for each u 2 C, dþu ðCÞ � ak.

182In Definition 1, the clique constraint ensures that the sub-
183graph is densely-connected. The negative-edge constraint

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019

www.epinions.com

IEE
E P

ro
of184 imposes a limit that every node cannot have too many nega-

185 tive neighbors in the subgraph, and the positive-edge con-
186 straint guarantees that every node has a sufficient number
187 of positive neighbors in the subgraph. Based on Definition 1,
188 we define the maximal ða; kÞ-clique below.

189 Definition 2. (Maximal ða; kÞ-clique) An induced subgraph C
190 is a maximal ða; kÞ-clique if C is an ða; kÞ-clique and there is
191 no ða; kÞ-clique C0 in G containing C.

192 Example 1. Consider a signed network shown in Fig. 1a. Sup-
193 pose that a ¼ 3 and k ¼ 1. We can easily derive that
194 fv1; v2; v3; v4; v5g is a ð3; 1Þ-clique.Moreover, it is a maximal
195 ð3; 1Þ-clique, because there is no super clique that can con-
196 tain it. Similarly, if a ¼ 3 and k ¼ 0, we have two maximal
197 ð3; 0Þ-cliques which are fv1; v2; v4; v5g and fv1; v3; v4; v5g.
198 Note that in this case, fv1; v2; v3; v4; v5g is no longer a
199 ð3; 0Þ-clique, as the node v2 violates the negative-edge
200 constraint.

201 Let C be the set of all ða; kÞ-cliques in the signed network
202 G. The ða; kÞ-clique in C with the largest size is referred to as
203 the maximum ða; kÞ-clique. In this paper, we aim to find all
204 maximal ða; kÞ-cliques and the maximum ða; kÞ-clique in a
205 signed network. Specifically, we formulate our problem as
206 follows.
207 Problem Statement. Given a signed network G and the
208 parameters a, k and r, our goal is to develop efficient algo-
209 rithms to settle the following two fundamental problems: 1)
210 enumerate all maximal ða; kÞ-cliques in G; and 2) identify
211 the maximum ða; kÞ-clique in G.
212 Note that the maximum ða; kÞ-clique search problem can
213 be solved easily if we can enumerate all maximal ða; kÞ-
214 cliques. Below, we focus mainly on analyzing the hardness
215 and challenges of the maximal ða; kÞ-clique enumeration
216 problem.
217 Hardness and Challenges. First, we show that the tradi-
218 tional maximal clique enumeration problem [8], [14],
219 [15], [16] is a special case of the maximal ða; kÞ-cliques
220 enumeration problem. Suppose that a ¼ 0 and k ¼ d�max,
221 where d�max is the largest negative degree in G. Given this
222 parameter setting, a maximal ða; kÞ-clique degrades to a
223 traditional maximal clique. This is because both the nega-
224 tive-edge and positive-edge constraints in Definition 1
225 always hold when a ¼ 0 and k ¼ d�max. As a result, enu-
226 merating all maximal ða; kÞ-cliques is equivalent to
227 enumerating all traditional maximal cliques if a ¼ 0 and
228 k ¼ d�max. Therefore, the classic maximal clique enumera-
229 tion problem is a special case of our problem when the
230 parameters a ¼ 0 and k ¼ d�max. Since the traditional maxi-
231 mal clique enumeration problem is NP-hard, our problem
232 is also NP-hard.

233Although there is a close connection between our
234problem and the maximal clique problem, the existing
235maximal clique enumeration algorithms cannot be imme-
236diately applied to solve our problem. This is because the
237traditional clique enumeration algorithms, such as the
238classic Bron-Kerbosch algorithm and its variants [14],
239[15], [16], can only enumerate all maximal cliques, but
240they cannot guarantee that all sub-cliques contained in
241the maximal cliques will be explored. Since a maximal
242ða; kÞ-clique can be a sub-clique of any maximal clique in
243the signed network, the traditional clique enumeration
244algorithms cannot be directly used for our problem. To
245solve our problem, a straightforward method is to find
246all the traditional maximal cliques first, and then and
247then enumerate all the maximal ða; kÞ-cliques in C for
248each traditional maximal clique C. However, this method
249is intractable for large signed graphs because the number
250of traditional maximal cliques in a signed graph may be
251very large and many maximal ða; kÞ-cliques contained
252in C may exist for each traditional maximal clique C.
253Moreover, this straightforward method may generate
254numerous redundant maximal ða; kÞ-cliques because the
255same maximal ða; kÞ-clique could be contained in many
256overlapped traditional maximal cliques. Therefore, the
257main challenge of our problem is how to efficiently enu-
258merate every maximal ða; kÞ-clique only once. Several
259powerful pruning techniques and a novel branch and
260bound algorithm to tackle this challenge are presented
261below.

2623 SIGNED GRAPH REDUCTION

263In this section, we propose several effective rules to prune
264the unpromising nodes that are definitely not contained in
265any maximal ða; kÞ-clique. LetGþ ¼ ðV;EþÞ be the subgraph
266of G ¼ ðV;EÞ that contains all the positive edges in G, in
267which Eþ , fðu; vÞjðu; vÞ 2 E, and ðu; vÞ is a positive edge}. For
268convenience, we refer to Gþ as the positive-edge graph of
269G. For example, Fig. 1b depicts a positive-edge graph of the
270signed graph shown in Fig. 1a.
271Based on the k-core concept in [9], the maximal positive-
272edge dake-core is defined as the maximal induced subgraph
273of G such that every node in this subgraph has a positive
274degree no less than dake. Clearly, by this definition, the
275node set of the maximal positive-edge dake-core in G is the
276same as the node set of the maximal dake-core in Gþ. Below,
277we show that all maximal ða; kÞ-cliques are contained in the
278maximal positive-edge dake-core of G.

279Lemma 1. Any maximal ða; kÞ-clique is contained in a connected
280component of the maximal positive-edge dake-core of G.

281Proof. Clearly, each node in the maximal ða; kÞ-clique has
282dake positive neighbors (see Definition 1). Thus, the maxi-
283mal ða; kÞ-clique forms an dake-core. Since any maximal
284ða; kÞ-clique is connected, it must be contained in a
285connected component of the maximal positive-edge
286dake-core ofG. tu
287To compute maximal ða; kÞ-cliques, we are able to reduce
288the signed graph based on Lemma 1. Specifically, we can
289first compute the maximal dake-core in Gþ, because its node

Fig. 1. Running example (red edges denote negative edges).

LI ET AL.: SIGNED CLIQUE SEARCH IN SIGNED NETWORKS: CONCEPTS AND ALGORITHMS 3

IEE
E P

ro
of

290 set is the same as that of the maximal positive-edge
291 dake-core in G. Then, we prune all the nodes in G that are
292 not contained in the maximal dake-core of Gþ.
293 Example 2. Reconsider the signed graph in Fig. 1a. Suppose
294 that a ¼ 3 and k ¼ 1. We can easily figure out that there is
295 a maximal dake-core fv1; . . . ; v7g in the positive-edge
296 graph Gþ (see Fig. 1b). Obviously, fv1; . . . ; v7g is also a
297 maximal positive-edge dake-core in G. Based on the maxi-
298 mal positive-edge dake-core, we can safely prune the
299 node v8 to compute maximal ða; kÞ-cliques, as v8 is defi-
300 nitely excluded in any maximal ða; kÞ-clique.
301 Although the maximal positive-edge dake-core excludes
302 many unpromising nodes, it may still be not very powerful
303 for pruning. For example, in Fig. 1b, the nodes v6 and v7 are
304 clearly not contained in any maximal ða; kÞ-clique when
305 a ¼ 3 and k ¼ 1, but the maximal positive-edge dake-core
306 fails to prune these two nodes. Below, we propose a more
307 effective approach to further prune unpromising nodes.

308 3.1 TheMCCore Pruning Rule

309 Here, we present a new cohesive subgraph model, called
310 maximal constrained dake-core, to further prune unpromis-
311 ing nodes for the maximal ða; kÞ-clique enumeration prob-
312 lem. We abbreviate the maximal constrained dake-core as
313 MCCore, when it is clear from the context. The key idea of
314 theMCCoremodel is based on the following result.

315 Lemma 2. Let C be an ða; kÞ-clique. Then, for each node u 2 C,
316 the subgraph induced by Nþu ðGÞ must contain an
317 ðdake � 1Þ-core.
318 Proof. By Definition 1, the neighbors of node u in C (Nþu ðCÞ)
319 form a dþu ðCÞ-clique. Thus, the subgraph induced by
320 Nþu ðGÞmust contain a dþu ðCÞ-clique. Since u 2 C, we have
321 dþu ðCÞ � dake. As a result, the subgraph induced by
322 Nþu ðGÞmust contain an ðdake � 1Þ-core. tu
323 From Lemma 2, we can immediately obtain the following
324 corollary.

325 Corollary 1. For each node u 2 V , if the subgraph induced by
326 Nþu ðGÞ does not contain an ðdake � 1Þ-core, u cannot be
327 involved in any ða; kÞ-clique.
328 Armed with Corollary 1, we can prune the node from G
329 if the subgraph induced by its positive neighbors cannot
330 include an ðdake � 1Þ-core. Note that after removing all
331 these unpromising nodes, some of the remaining nodes in
332 G may become unpromising. Thus, this pruning procedure
333 can iterate until no further nodes can be pruned. We will
334 show that the remaining nodes form a maximal constrained
335 dake-core when this iterative pruning procedure terminates.
336 The maximal constrained dake-core is formally defined as
337 follows.

338 Definition 3. (Maximal constrained dake-core) Given a signed
339 graph G, a positive real value a, and an integer k, a maximal
340 constrained dake-core R is an induced subgraph of G that meets
341 the following constraints.

342 � Neighbor-core constraint: for each u 2 R, the sub-
343 graph induced byNþu ðRÞ contains an ðdake � 1Þ-core;

344� Maximal constraint: there does not exist an induced
345subgraph in G that contains R and also satisfies the
346neighbor-core constraints.

347Below, we show that all maximal ða; kÞ-cliques are con-
348tained in the maximal constrained dake-core.
349Lemma 3. Any maximal ða; kÞ-clique must be contained in a
350connected component of the maximal constrained dake-core of
351G.

352Proof. For each node u in a maximal ða; kÞ-clique C, the pos-
353itive neighbors of u in C must be a dþu ðCÞ-clique. Thus,
354every node in C satisfies the neighbor-core constraint.
355Since C is connected, it must be included in a connected
356component of the maximal constrained dake-core of G. tu
357According to Lemma 3, we can prune all the nodes that
358are not contained in the maximal constrained dake-core.
359Note that the maximal constrained dake-core is more effec-
360tive than the maximal positive-edge dake-core to prune
361unpromising nodes. The reason is as follows. By Defini-
362tion 3, we can easily obtain that dþu ðRÞ � dake for every
363node u in a maximal constrained dake-core R on the basis of
364the neighbor-core constraint. As a result, the maximal con-
365strained dake-core of G must be contained in the maximal
366positive-edge dake-core of G. That is to say, the maximal
367constrained dake-core can prune more unpromising nodes
368than the maximal positive-edge dake-core.
369Example 3. Reconsider the signed graph in Fig. 1a. Assume
370that a ¼ 3 and k ¼ 1. We can see that the node v7 violates
371the neighbor-core constraint, because the subgraph
372induced by its positive neighbors fv2; v5; v6g cannot con-
373sist of a 2-core. Thus, v7 cannot be contained in the maxi-
374mal constrained dake-core. Likewise, v6 and v8 can also be
375pruned. It is easy to verify that fv1; . . . ; v5g is a maximal
376constrained dake-core. Clearly, compared to the maximal
377positive-edge dake-core, the maximal constrained
378dake-core can prune more nodes (v7 and v8) in this
379example.

3803.2 TheMCBasic Algorithm

381To compute the MCCore, we can first compute the maxi-
382mal positive-edge dake-core denoted by S, as S contains
383the MCCore. Then, we check whether or not u satisfies
384the neighbor-core constraint for each node u 2 S. Specifi-
385cally, we create a subgraph Sþu induced by u’s positive
386neighbors in S (Nþu ðSÞ), and calculate the (dake � 1)-core
387in Sþu . If S

þ
u does not contain an (dake � 1)-core, we delete

388u from S. Since the deletion of u may result in u’s neigh-
389bors no longer meeting the neighbor-core constraint, we
390need to iteratively process u’s neighbors. The processing
391terminates if no node can be deleted. The details are pro-
392vided in Algorithm 2.
393Algorithm 2 first invokes Algorithm 1 to compute the
394maximal dake-core in Gþ. Note that Algorithm 1 admits
395three input parameters fH; I; tg, where H is a graph, I is a
396set of fixed nodes, and t is an integer. Algorithm 1 aims at
397computing the maximal t-core in H such that it must con-
398tain all nodes in I. If no such a t-core exists, the algorithm
399returns a Boolean constant 0 and an empty set. To compute

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019

IEE
E P

ro
of

400 a traditional maximal t-core in H, we can invoke Algo-
401 rithm 1 with an empty fixed nodes set, i.e., I ¼ ;.

402 Algorithm 1. ICore (H ¼ ðVH;EHÞ, I, t)
403 Input: GraphH ¼ ðVH;EHÞ, fixed nodes I, and an integer t
404 Output: An boolean constant and the node set of the t-core
405 1: D ;;Q ;;
406 2: for each v 2 VH do
407 2: if dvðHÞ < t then
408 4: if v 2 I then return ð0; ;Þ;
409 5: Q:pushðvÞ;
410 6: whileQ 6¼ ; do
411 7: u Q:popðÞ;D D [fug;
412 8: for each v 2 NuðHÞ s.t. dvðHÞ � t do
413 9: dvðHÞ dvðHÞ � 1;
414 10: if dvðHÞ < t then
415 11: if v 2 I then return ð0; ;Þ;
416 12: Q:pushðvÞ;
417 13: VH VHnD;
418 14: if VH ¼ ; then return ð0; ;Þ;
419 15: return ð1; VHÞ;

420 Algorithm 2.MCBasic (G, a, k)

421 Input: G ¼ ðV;EÞ, a, and k
422 Output: The node set of the maximal constrained dake-core
423 1: ðflag; VRÞ ICore (Gþ, ;, dake); /* compute the dake-core
424 inGþ */
425 2: Let R be the subgraph induced by VR;
426 3: Let dþv ðRÞ be the positive degree of v in the subgraph R;
427 4: fu 1 for all u 2 VR;
428 5: X ;;Q ;; /* Q is a queue */
429 6: for each u 2 VR do
430 7: Let Rþu be the subgraph induced by Nþu ðRÞ; /*
431 ego network of u in R */
432 8: ðflag; SuÞ ICore (Rþu , ;, dake � 1);
433 9: if flag ¼ 0 thenQ:pushðuÞ; fu 0;
434 10: whileQ 6¼ ; do
435 11: u Q:popðÞ;X X [fug;
436 12: for each v 2 Nþu ðRÞ s.t. fv ¼ 1 do
437 13: dþv ðRÞ dþv ðRÞ � 1;
438 14: if dþv ðRÞ < dake then
439 15: Q:pushðvÞ; fv 0; /* degree pruning */
440 16: else
441 17: Let ~Rþv be the subgraph induced by Nþv ðRÞ n fug;
442 18: ðflag; SvÞ ICore (~Rþv , ;, dake � 1);
443 19: if flag ¼ 0 thenQ:pushðvÞ; fv 0;
444 20: VR VR nX;
445 21: return VR;

446 Algorithm 2makes use of a queueQ to maintain all nodes
447 that need to be deleted (line 5). The iterative node-pruning
448 procedure is shown in lines 10-19. Note that Algorithm 2
449 also applies a degree pruning rule to optimize efficiency
450 (lines 14-15). Specifically, when the algorithm processes a
451 node u, it first computes its positive degree. If the positive
452 degree is smaller than dake, the subgraph induced by its pos-
453 itive neighbors cannot contain an ðdake � 1Þ-core, and thus u
454 can be directly deletedwithout invokingAlgorithm1 to com-
455 pute the ðdake � 1Þ-core (lines 14-15). The following theorem
456 shows the correctness of Algorithm 2.

457

467467467467Theorem 1. Algorithm 2 correctly computes the maximal con-
468strained dake-core.
469Proof. Let R be the results obtained by Algorithm 2. First,
470we claim that if the MCCore does not exist, Algorithm 2
471outputs R ¼ ;. This can be proven by contradiction. Sup-
472pose, to the contrary, that R 6¼ ;. Since no MCCore exists
473in G, there does not exist an induced subgraph of G
474such that every node in this subgraph meets the neigh-
475bor-core constraint. However, by Algorithm 2, all the
476remaining nodes in R must satisfy the neighbor-core
477constraint, which is a contradiction. Second, we show
478that Algorithm 2 correctly outputs the MCCore, if it
479exists. Obviously, every node in R meets the neighbor-
480core constraint. To prove the theorem, it remains to
481show that R satisfies the maximal constraint (see
482Definition 3). This can also be proven by contradiction.
483Suppose that there is an MCCore R0 such that it strictly
484contains R, i.e., R is a subgraph of R0 and R 6¼ R0. Since
485R0 is an MCCore, every node in R0 meets the neighbor-
486core constraint. Clearly, all nodes in R0 cannot be deleted
487by Algorithm 2. Therefore, all the nodes in R0 must be
488contained in the results obtained by Algorithm 2, i.e., R,
489which is a contradiction. tu
490Example 4. Consider the signed graph in Fig. 1a. Let a ¼ 3
491and k ¼ 1. Clearly, the maximal positive-edge dake-core
492is the subgraph induced by fv1; . . . ; v7g. We can see that
493the nodes fv1; . . . ; v5g satisfy the neighbor-core constraint,
494while the nodes fv6; v7g violate this constraint. Thus, in
495lines 6-9, the algorithm pushes fv6; v7g into the queue Q.
496After deleting fv6; v7g from Q, the nodes fv1; . . . ; v5g still
497meet the neighbor-core constraint. Thus, we have Q ¼ ;
498after deleting v6, and v7. Since Q ¼ ;, the algorithm termi-
499nates and returns fv1; . . . ; v5g as theMCCore as desired.

500Below, we introduce a useful concept, called ego network,
501which will be used to analyze the time complexity of
502Algorithm 2.

503Definition 4. (ego network) Given a signed graph G and a
504node u, the ego network of u is a subgraph of G induced by
505u’s positive neighbors, i.e., Nþu ðGÞ.
506Example 5. Consider the signed network in Fig. 1a. By Defi-
507nition 4, the ego network of v2 is the subgraph induced by
508its positive neighbors fv1; v4; v5; v7g shown in Fig. 2a. Sim-
509ilarly, Fig. 2b depicts an ego network of v5 which is a sub-
510graph induced by fv1; v2; v4; v4; v6; v7g.
511It should be noted that an ego networkmay contain nega-
512tive edges (see Fig. 2b). Let Hmax be the maximum
513ego network in G among all the nodes’ ego networks. Based

Fig. 2. Illustration of the definition of ego network (solid lines).

LI ET AL.: SIGNED CLIQUE SEARCH IN SIGNED NETWORKS: CONCEPTS AND ALGORITHMS 5

IEE
E P

ro
of

514 on Hmax, we analyze the time and space complexity of
515 MCBasic in Theorem 2.

516 Theorem 2. The time and space complexity of Algorithm 2 is
517 OðmjHmaxjÞ and Oðmþ nÞ respectively.
518 Proof. The time spent to compute the maximal positive-
519 edge dake-core is Oðmþ nÞ. In lines 6-19, the algorithm
520 traverses each edge in R at most 2 times in the main
521 loops (except for invoking Algorithm 1 to compute the
522 ðdake � 1Þ-core). When the algorithm traverses an edge
523 ðu; vÞ (line 12), it may visit v’s ego network to compute the
524 ðdake � 1Þ-core, which takes OðjHmaxjÞ time. Therefore,
525 the total cost in lines 6-19 is bounded by OðmjHmaxjÞ.
526 Since the algorithm only needs to maintain several linear-
527 sized structures, the space usage of Algorithm 2 is
528 Oðmþ nÞ. tu
529 Note that in real-world signed graphs, the running time
530 of Algorithm 2 could be much less than the worst-case time
531 complexity shown in Theorem 2. This is because the size of
532 most ego networks is much smaller than jHmaxj, due to the
533 power-law degree distribution of real-world graphs. More-
534 over, Algorithm 2 makes use of the degree pruning rule
535 (line 15) to further reduce the time costs. In our experiments,
536 we will show that Algorithm 2 is very efficient in practice.

537 3.3 TheMCNew Algorithm

538 To further improve the efficiency of MCBasic, we propose a
539 novel algorithm, called MCNew, based on a dramatically
540 different idea. The striking feature of MCNew is that its
541 worst-case time complexity is OðsmÞ, where s is the arboric-
542 ity of the signed graph G [17]. The arboricity is shown to be
543 bounded by Oð ffiffiffiffiffi

m
p Þ [11], and it is typically much smaller

544 than the worst-case bound in most real-world graphs [12].
545 Before devising the MCNew algorithm, we first introduce
546 a new concept called ego triangle as follows.

547 Definition 5. (ego triangle) For any node u, a triangle ðu; v; wÞ
548 in the signed graph G is called an ego triangle of u if and only
549 if both ðu; vÞ and ðu;wÞ are positive edges.
550 It is important to note that the ego triangle is defined for
551 a specified node. The same triangle ðu; v; wÞ may be an
552 ego triangle for u, but it may not be an ego triangle for v and
553 w. For example, in Fig. 1a, the triangle ðv1; v2; v3Þ is an
554 ego triangle of v1, because both ðv1; v2Þ and ðv1; v3Þ are posi-
555 tive edges. This triangle, however, is not an ego triangle of
556 v2 (or v3), as ðv2; v3Þ is a negative edge.
557 Based on Definition 5, we can obtain a useful result, as
558 shown in Lemma 4.

559 Lemma 4. For any positive edge ðu; vÞ in a signed graph G, the
560 degree of v in u’s ego network is equal to the number of
561 ego triangles of u containing ðu; vÞ.
562 Proof. Recall that the ego network of u is a subgraph
563 induced by Nþu ðGÞ. For any ego triangle of u containing
564 ðu; vÞ, denoted by ðu; v; wÞ, there exists an edge ðv; wÞ in
565 u’s ego network. This is because both ðu; vÞ and ðu;wÞ are
566 positive edges, and thereby both v and w are contained in
567 u’s ego network by definition. As a result, the number of
568 ego triangles containing ðu; vÞ equals the number of
569 neighbors of v in u’s ego network. tu

570Let Dv
u be the degree of v in u’s ego network. Notice that

571Dv
u is not necessarily equal to Du

v . The following example
572illustrates the definition of Dv

u.

573Example 6. Consider an edge ðv2; v5Þ in Fig. 1a. We have
574Dv5

v2
¼ 3, because v5 has three neighbors in v2’s ego network

575as shown in Fig. 2a. On the other hand, we can see that
576there are three ego triangles of v2 containing ðv2; v5Þ,
577including ðv2; v1; v5Þ, ðv2; v4; v5Þ, and ðv2; v5; v7Þ. This result
578confirms that Dv

u equals the number of ego triangles of u
579including ðu; vÞ, as shown in Lemma 4. We can also deter-
580mine that Dv2

v5
¼ 4 because v2 has four neighbors in v5’s

581ego network as illustrated in Fig. 2b. Clearly, Dv2
v5
6¼ Dv5

v2
in

582this example.

583Recall that to compute the MCCore, it is crucial to deter-
584mine whether a node’s ego network involves an
585ðdake � 1Þ-core. The key step to calculating the
586ðdake � 1Þ-core in u’s ego network is to compute the degree
587of each node in u’s ego network. In terms of Lemma 4, we
588are capable of computing the degree of every node in u’s
589ego network by counting the ego triangles of u. Specifically,
590for each positive edge ðu; vÞ, we can compute Dv

u by count-
591ing the ego triangles of u including ðu; vÞ. We are also able
592to calculate Du

v by counting the ego triangles of v including
593ðv; uÞ. Consequently, for each positive edge in G, we can
594compute Dv

u and Du
v following two various directions,

595respectively. Thus, in our computation, each undirected
596positive edge ðu; vÞ can be transformed into two directed pos-
597itive edges ðu; vÞ and ðv; uÞ.
598If Dv

u < dake � 1, we can safely remove v from u’s
599ego network. As indicated in Lemma 4, removing v from u’s
600ego network is equivalent to deleting a directed positive
601edge ðu; vÞ in G. For instance, in Fig. 2a, removing a node v1
602in v2’s ego network is equivalent to deleting a directed edge
603ðv2; v1Þ, because the number of ego triangles of v2 containing
604ðv2; v1Þ is 0 after removing ðv2; v1Þ. The deletion of ðu; vÞmay
605cause the other directed positive edges need to be removed.
606For example, consider the ego network of v2 in Fig. 2a.
607Assume that a ¼ 3 and k ¼ 1. After deleting ðv2; v1Þ, we
608have also to remove ðv2; v4Þ (and ðv2; v5Þ), because the num-
609ber of ego triangles of v2 containing ðv2; v4Þ (and ðv2; v5Þ)
610decreases to 1 which is smaller than dake � 1. Moreover,
611delete a directed positive edge ðu; vÞ, which will decrease the
612positive degree of u by 1, denoted by dþu . If d

þ
u is smaller

613than dake, u can be deleted from G because u’s ego network
614cannot contain an ðdake � 1Þ-core. Note that the deletion of
615a node u can be implemented by removing a set of edges
616associated with u, thus the same edge-deletion method can
617be used to handle a node deletion. This edge-deletion proce-
618dure is iteratively performed until no edge (and also no
619node) can be removed. It can be shown that each remaining
620node must satisfy the neighbor-core constraint when the
621algorithm completes, and thus all remaining nodes are com-
622prised in the MCCore. The MCNew algorithm is outlined in
623Algorithm 3.
624Implementation Details. Algorithm 3 first calls Algorithm 1
625to compute the maximal dake-core R ¼ ðVR;ERÞ in the posi-
626tive-edge graph, because the maximal constrained dake-core
627is contained in the maximal dake-core (line 1). Then, the
628algorithm doubles the directions for each positive edge in

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019

IEE
E P

ro
of

629 ER, and maintains all directed positive edges in Sþ (lines 5-
630 6). Subsequently, for each directed positive edge ðu; vÞ 2 Sþ,
631 the algorithm computes Dv

u by counting the ego triangles
632 that contains ðu; vÞ (lines 7-8). If Dv

u < dake � 1, the algo-
633 rithm pushes the directed positive edge ðu; vÞ into a queue Q
634 (line 9). Then, the algorithm iteratively removes the unqual-
635 ified directed positive edges from the queue Q (line 10-24).
636 When deleting a directed positive edge ðu; vÞ from Sþ, the
637 algorithm needs to update Dw

u for each ðu;wÞ 2 Sþ and
638 ðv; wÞ 2 ER (lines 12-13). This is because the removal of
639 ðu; vÞ may break an ego triangle of u containing ðu;wÞ, and
640 therefore the algorithm may need to update Dw

u in terms of
641 Lemma 4. If the updated Dw

u is smaller than dake � 1, the
642 algorithm pushes it into Q for iterative edge deletion
643 (line 14). If the positive degree of a node u is smaller than t

644 after deleting ðu; vÞ, the algorithm removes u from G, and
645 applies a similar edge-deletion method to handle the node
646 deletion case (lines 16-24). The algorithm terminates when
647 no further edges can be deleted. Finally, the algorithm out-
648 puts a subgraph induced by all the remaining nodes
649 (line 25). The following theorem shows the correctness of
650 Algorithm 3.

651 Algorithm 3.MCNew (G, a, k)

652 Input: G ¼ ðV;EÞ, a, and k
653 Output: The node set of the maximal constrained dake-core
654 1: ðflag; VRÞ ICore (Gþ, ;, dake); /* compute the
655 bakc-core in Gþ */
656 2: R the subgraph induced by VR; /* R ¼ ðVR;ERÞ */
657 3: Q ;; Sþ ;; t dake � 1;
658 4: dþu jfwjðu;wÞ 2 EþRgj; /* dþu is the positive degree of u
659 in R */
660 5: for each ðu; vÞ 2 EþR do
661 6: Sþ Sþ [fðu; vÞ; ðv; uÞg;
662 7: for each ðu; vÞ 2 Sþ do
663 8: Dv

u jfwjðu;wÞ 2 EþR; ðv; wÞ 2 ERgj;
664 9: if Dv

u < t then Q:pushððu; vÞÞ;
665 10: whileQ 6¼ ; do
666 11: ðu; vÞ Q:popðÞ; Remove ðu; vÞ from Sþ;
667 12: for each w s.t. ðu; wÞ 2 Sþ and ðv; wÞ 2 ER do
668 13: Dw

u Dw
u � 1;

669 14: if Dw
u < t and ðu;wÞ =2 Q thenQ:pushððu;wÞÞ;

670 15: dþu dþu � 1;
671 16: if dþu � t then
672 17: for each w s.t. ðu; wÞ 2 Sþ do
673 18: Remove ðu;wÞ from Sþ and Q;
674 19: for each w s.t. ðw; uÞ 2 Sþ do
675 20: Remove ðw; uÞ from Sþ and Q; dþw dþw � 1;
676 21: for each x s.t. ðw; xÞ 2 Sþ and ðu; xÞ 2 ER do
677 22: Dx

w Dx
w � 1;

678 23: if Dx
w < t and ðw; xÞ =2 Q thenQ:pushððw; xÞÞ;

679 24: Remove u from R;
680 25: return the subgraph induced by nodes in EþðRÞ;

681 Theorem 3. Algorithm 3 correctly calculates the maximal con-
682 strained dake-core.
683 Proof. Let R ¼ ðVR;ERÞ be the subgraph output of Algo-
684 rithm 3. First, we claim that every node in VR meets the
685 neighbor-core constraint. Clearly, after the algorithm ter-
686 minates, each node u in VR has at least dake positive

687neighbors (dþu � dake). When the algorithm completes,
688we have Dv

u � dake � 1 for each directed positive edge
689ðu; vÞ, indicating every node in u’s ego network has
690a degree at least dake � 1. As a consequence, the
691ego network of u contains an ðdake � 1Þ-core. Second, we
692show that R also satisfies the maximal constraint. Sup-
693pose, to the contrary, that there is a subgraph R0 such that
694it contains R and also every node in R0 meets the neigh-
695bor-core constraint. Let u be a node in R0 nR. By the
696neighbor-core constraint, dþu � dake, u has at least dake
697positive neighbors whose degrees in u’s ego network are
698no smaller than dake � 1 (i.e., Dv

u � dake � 1). As a result,
699such a node u cannot be deleted by Algorithm 3. Thus, u
700must be included in R, which is a contradiction. tu
701Example 7. Reconsider the signed graph in Fig. 1a. Let
702a ¼ 3 and k ¼ 1. First, the algorithm obtains a maximal
703dake-core which is the subgraph induced by fv1; . . . ; v7g.
704We can easily derive that Dv2

v7
¼ 1, Dv6

v7
¼ 1, Dv7

v6
¼ 1,

705Dv3
v6
¼ 1, Dv7

v2
¼ 1, and Dv6

v3
¼ 1. Thus, the algorithm pushes

706six directed positive edges into Q. After deleting ðv7; v2Þ,
707Dv5

v7
is updated by 1. Thus, ðv7; v5Þ will be pushed into Q.

708Since dþv7 < 3 after deleting ðv7; v2Þ, the algorithm

709removes v7 (lines 15-24). As a consequence, the edges

710ðv7; v6Þ, ðv7; v5Þ, ðv6; v7Þ, and ðv2; v7Þ are removed from Q
711(lines 17-20). For node v6, d

þ
v6

decreases to 2. In the next
712iteration, the algorithm pops ðv6; v3Þ from Q, and v6 will

713be deleted as dþv6 < 3. Finally, the algorithm will obtain

714theMCCore fv1; . . . ; v5g as desired.
715Complexity Analysis. The time and space complexity of
716Algorithm 3 is analyzed in the following theorem.

717Theorem 4. The time and space complexity of Algorithm 3 is
718OðsmÞ and Oðmþ nÞ respectively, where s denotes the arbor-
719icity of the signed graph G.

720Proof. First, in line 1, the algorithm takes at most OðmÞ time
721to compute the maximal dake-core R. Second, in lines 7-9,
722the algorithm has to enumerate all ego triangles for all
723nodes in R, which can be implemented in OðsmÞ time by
724using triangle enumeration algorithm [18]. Third, in
725lines 10-24, every directed positive edge ðu; vÞ is pushed into
726Q at most once. Thus, at most OðmÞ edges can be popped
727fromQ. When deleting an edge ðu; vÞ fromQ, the algorithm
728may explore all common neighbors between u and v
729(line 12), which can be done inOðminfdu; dvgÞ using a hash-
730ing structure. Since at most OðmÞ edges can be deleted, the
731total cost in lines 10-24 is OðPðu;vÞ2ER

minfdu; dvgÞ. Note
732that this total cost includes the cost of deleting nodes
733in lines 16-24, because the node deletion in our algorithm
734is processed as a set of edge deletions. As a result, the
735total time overhead of our algorithm is OðPðu;vÞ2ER

min

736fdu; dvg þ smÞ, which can be bounded byOðsmÞ. Since our
737algorithm only maintains several linear-sized data struc-

738ture, the space complexity of the algorithm isOðmþ nÞ. tu
739Remark. It is worth remarking that the MCCore model is
740fundamentally different from the k-truss model [19]. In
741the k-truss model, each edge is contained in at least k� 2
742triangles. The MCCore model contains both positive and
743negative edges, and each positive edge has two implicit
744directions as shown in Algorithm 3. The k-truss model

LI ET AL.: SIGNED CLIQUE SEARCH IN SIGNED NETWORKS: CONCEPTS AND ALGORITHMS 7

IEE
E P

ro
of

745 only has one type of edge, and it does not consider the
746 direction of the edges. Owing to these differences, the
747 MCCore computation algorithm is much more compli-
748 cated than the k-truss computation algorithm. Algorithm 3
749 not only needs to delete the unqualified edges, but it also
750 needs to delete nodes. The traditional k-truss computa-
751 tion algorithm [19] only needs to iteratively remove
752 unpromising edges.

753 4 ENUMERATING ALL MAXIMAL ða; kÞ-CLIQUES

754 Recall that the maximal ða; kÞ-clique enumeration problem
755 is NP-hard. Thus, a polynomial-time algorithm does not
756 exist to solve our problem unless P=NP. In this section, we
757 propose a branch and bound algorithm, called MSCE, to
758 compute all maximal ða; kÞ-cliques in large signed net-
759 works. The MSCE algorithm first invokes the MCNew algo-
760 rithm to prune the unpromising nodes, and then performs
761 an efficient branch and bound enumeration (BBE) proce-
762 dure on the reduced signed graph to find all maximal
763 ða; kÞ-cliques. Below, we detail the branch and bound enu-
764 meration (BBE) procedure.
765 The Key Idea of BBE. Let C be the set of all maximal con-
766 nected component of MCCore obtained by Algorithm 3. For
767 each maximal connected component R 2 C, we carry out the
768 following BBE procedure. First, if R is not a valid ða; kÞ-
769 clique, BBE picks a node u fromR to divide the search space
770 into two subspaces: 1) the subspace of including u, and 2) the
771 subspace of excluding u. Then, BBE recursively performs
772 the same procedure in these two subspaces. Obviously, any
773 maximal ða; kÞ-clique must be contained in one of these
774 subspaces. The BBE algorithm makes use of a pair ðR; IÞ to
775 represent a search space, in which R is the set of candidate
776 nodes, and I denotes the set of included nodes. Initially, R is
777 set to be a maximal connected component of MCCore, and
778 I ¼ ;. In each recursion, BBEmay select a node v 2 R to split
779 the search space ðR; IÞ into two subspaces ðR; I [fugÞ and
780 ðR n fug; IÞ. Note that a search space ðR; IÞ comprises all
781 themaximal ða; kÞ-cliques containing I.
782 Second, if R is an ða; kÞ-clique, BBE can terminate the
783 search early, and then verifies whether R is a maximal
784 ða; kÞ-clique. Note that for each ða; kÞ-clique C, we can apply
785 the following approach to show whether it is a maximal
786 ða; kÞ-clique. First, we compute the common neighbors of
787 all nodes in C. Then, for each common neighbor v, we deter-
788 mine whether C [fvg is a valid ða; kÞ-clique or not. If this
789 the case, C is not a maximal ða; kÞ-clique, as it can be
790 expanded by a node v. Otherwise, C is a maximal ða; kÞ-
791 clique. Below, we propose several effective pruning techni-
792 ques to further improve the efficiency of the BBE algorithm.

793 4.1 The Pruning Rules in BBE

794 The dake-Core Pruning Rule. In the search subspace ðR; IÞ, let
795 GR be the subgraph induced by R, and GþR be the positive-
796 edge graph of GR. Then, we compute the maximal dake-core
797 on GþR, denoted by C. If C contains all nodes in I, we are
798 able to reduce the candidate nodes set R. In particular, we
799 can set R ¼ C, because all nodes in R n C can be pruned
800 (see Lemma 1). Otherwise, we can prune the entire search
801 space, because it cannot contain any maximal ða; kÞ-clique
802 including all nodes in I. Similarly, we are also capable of

803using MCCore for pruning. However, in BBE, we only
804adopt dake-core pruning. This is because the algorithm
805needs to perform the pruning rule in each recursion (each
806search subspace). Thus, we choose dake-core pruning, as it
807is much more computationally efficient than MCCore
808pruning.
809The Clique-Constraint Pruning Rule. Let u be the picked
810node in the search space ðR; IÞ. Consider the subspace of
811including u, i.e., ðR; I [fugÞ. Clearly, I [fug must be a cli-
812que, because all the included nodes in an ða; kÞ-clique form
813a clique. Otherwise, u cannot be added into I. For each
814v 2 R n fI [fugg, if v is not a common neighbor of the
815nodes in I [fug, we can safely prune v. This is because, v
816cannot be involved in a maximal ða; kÞ-clique that contains
817I [fug. Therefore, we can prune v in the search space
818ðR; I [fugÞ. Using this pruning rule, we can further reduce
819the candidate nodes set R.
820The Negative-Edge Constraint Pruning Rule. Except for the
821clique-constraint pruning, we are also able to leverage the
822negative-edge constraint to further prune the subspace of
823including u. Specifically, for each v 2 R n fI [fugg, if every
824node in the subgraph induced by fI [fu; vgg violates the
825negative-edge constraint, v can be pruned. The reason is as
826follows. If some of nodes in fI [fu; vgg do not meet the
827negative-edge constraint, fI [fu; vgg cannot be contained
828in any maximal ða; kÞ-clique. That is to say, v cannot be
829included in any maximal ða; kÞ-clique that already contains
830fI [fugg. As a result, we can prune v in the subspace
831ðR; I [fugÞ.

8324.2 TheMSCE Algorithm

833TheMSCE algorithm is detailed in Algorithm 4. In lines 1-5,
834MSCE first invokes MCNew to compute the MCCore
835(line 1). Then, for each maximal connected component,
836MSCE calls BBE to enumerate all maximal ða; kÞ-cliques
837(line 2-5). Lines 6-25 outlines the BBE procedure. The
838dake-core pruning rule is implemented in lines 8-10. Specifi-
839cally, the algorithm invokes Algorithm 1 with the fixed
840nodes set I to compute whether there is an dake-core in the
841positive-edge graph GþR containing I (line 9). If no such an
842dake-core exists, the algorithm prunes the current search
843space in terms of the dake-core pruning rule (line 10). Other-
844wise, if the resulting dake-core is also an ða; kÞ-clique, the
845algorithm performs a maximal property testing to verify
846whether it is a maximal ða; kÞ-clique (lines 11-12 and
847lines 21-25), and terminates early (line 13). The recursion in
848the subspace of including u is implemented in lines 15-19,
849while line 20 describes the recursion performed in the sub-
850space of excluding u. Note that both the clique-constraint
851and negative-edge constraint pruning rules are imple-
852mented in lines 16-18. Since Algorithm 4 explores all search
853subspaces, the correctness of our algorithm is easily guaran-
854teed. Below, we analyze the time and space complexity of
855our algorithm.
856Complexity Analysis. The worst-case time complexity of
857the MSCE algorithm is exponential, due to the NP-hardness
858of our problem. Clearly, the enumeration tree of the MSCE
859algorithm is a binary tree because the algorithm partitions
860the search space into two subspaces in each recursion. Let n0

861andm0 be the number of nodes and edges in the MCCore C,
862respectively. There are at most 2n

0
subspaces explored by

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019

IEE
E P

ro
of

863 MSCE. In each search subspace ðR; IÞ, MSCE takes OðjGRjÞ
864 time to compute the dake-core (line 9 in Algorithm 4), which
865 is dominated by Oðm0Þ. To compute the clique-constraint
866 pruning and the negative-edge constraint pruning, the algo-
867 rithm consumes OðjRj þ jIjÞ time, which is bounded by
868 Oðn0Þ. To check the maximal property for an ða; kÞ-clique,
869 MSCE takes at most OðPu2R duðCÞÞ time (lines 21-25),
870 which is bounded by Oðm0Þ. Therefore, the total cost of
871 MSCE spent in each recursion is at most Oðm0Þ. As a result,
872 the time complexity of MSCE is Oð2n0 ðm0ÞÞ. Since the size of
873 the MCCore is typically not very large and the proposed
874 pruning rules are very effective, MSCE is tractable for han-
875 dling large-scale signed graphs. In the experiments, we
876 show that our algorithm is scalable to the signed graph with
877 more than one million nodes and ten millions edges. For the
878 space complexity, the algorithm uses at most Oðm0Þ space in
879 each recursion. Since our algorithm works in a depth-first
880 search (DFS) manner, the total space overhead of MSCE is
881 Oðmþ nÞ, which is linear with respect to (w.r.t.) the graph
882 size.

883 Algorithm 4.MSCE (G, a, k)

884 Input: G ¼ ðV;EÞ, a, and k
885 Output: All maximal ða; kÞ-cliques
886 1: R ;; VR MCNew (G, a, k);
887 2: C the set of maximal connected components of the sub-
888 graph induced by VR;
889 3: for each C 2 C do
890 4: BBE (VC , ;, a, k);
891 5: returnR;
892 6: Procedure BBE (R, I, a, k)
893 7: Let GR ¼ ðR;ERÞ be the subgraph induced by R;
894 8: Let GþR ¼ ðR;EþRÞ be the positive-edge subgraph of GR;
895 9: ðflag;RÞ ICore (GþR, I, dake);
896 10: if flag ¼ 0 then return;
897 11: if R is an ða; kÞ-clique then
898 12: ifMaxTest (R, a, k)=1 thenR R[fRg;
899 13: return; /* early termination */
900 14: Pick a node u from R n I;
901 15: D ;; Iu I [fug; /* include u */
902 16: for v 2 R n Iu do
903 17: if ðv =2 NuðGRÞÞ or ð9w 2 Iu [fvg s.t. d�wðIu [fvgÞ > k)
904 then
905 18: D D [fvg;
906 19: BBE (R nD, Iu, a, k)
907 20: BBE (R n fug, I, a, k); /* exclude u */
908 21: ProcedureMaxTest (R, a, k)
909 22: Let CNR be the set of common neighbors of all nodes in
910 R;
911 23: for each v 2 CNR do
912 24: if d�wðR [fvgÞ � k for all w 2 R [fvg then return 0;
913 25: return 1;

914 Heuristic Node Selection Strategy. Recall that the MSCE

915 algorithm needs to select a node to split the search space in

916 each recursion (line 14). A naive method is to randomly
917 select a node u from R n I. However, such a method may be

918 inefficient. This is because this naive approach may pick a

919 node that has many neighbors which may degrade the per-

920 formance of the clique-constraint pruning and the negative-

921 edge constraint pruning (lines 16-18). To enhance the

922pruning performance, we propose a heuristic node selection
923strategy. Specifically, we choose the node u from R n I with
924the minimum positive degree, i.e., u ¼ argminv2RnI
925fdþv ðGRÞg. The rationale behind our approach is as follows.
926The node u with minimum positive degree results in many
927other nodes in R n I that are either negative neighbors or
928non-neighbor nodes of u. The negative neighbors are likely
929to be pruned by the negative-edge constraint pruning rule,
930and the non-neighbor nodes can be pruned by the clique-
931constraint pruning rule. In our experiments, we show that
932this heuristic node selection strategy significantly outper-
933forms a random node selection strategy.

9345 FINDING THE MAXIMUM ða; kÞ-CLIQUE

935We can slightly modify Algorithm 4 to find the maximum
936ða; kÞ-clique. Specifically, in line 11, when obtaining an
937ða; kÞ-clique, we maintain the size of the largest ða; kÞ-clique
938C� found so far, and then use the size of C�, denoted by
939r ¼ jC�j, to prune the search space. After computing the
940dake-core R (line 9), the algorithm can terminate early if
941jRj < r. This is because in this case, the results obtained in
942the current search subspace cannot contain an ða; kÞ-clique
943that is larger than r. Such a size-based pruning rule, how-
944ever, may not be very effective, because the number of
945nodes in the dake-core R is often larger than the size of C�.
946In this section, we propose several more effective pruning
947rules to further speed up the algorithm for maximum
948ða; kÞ-clique search.
949Similar to Algorithm 4, we refer to ðR; IÞ as a search sub-
950space of the maximum ða; kÞ-clique search problem, where
951R is the dake-core computed in line 9 in Algorithm 4 and
952I � R is a clique which will be expanded to an ða; kÞ-clique.
953Note that for each ða; kÞ-clique C identified in the search
954subspace ðR; IÞ, C must include I and also C is contained in
955R.
956For any search subspace ðR; IÞ, the key step of our prun-
957ing rules is to derive some tight upper bounds for the size
958of the largest ða; kÞ-clique that is contained in R. If the upper
959bound of the largest ða; kÞ-clique contained in R is no larger
960than the size of the largest ða; kÞ-clique found so far (i.e., r),
961we can safely prune the current search subspace. Below, we
962propose three new upper bounds.
963Color-Based Bound. Since the ða; kÞ-clique must satisfy the
964clique constraint, we can make use of the classic color-based
965approach to bound the size of the largest ða; kÞ-clique con-
966tained in R. Specifically, we assign a color to each node in
967the signed graph G using a degree-ordering based greedy
968coloring algorithm [20], [21] so that no two adjacent nodes
969have the same color. Clearly, the nodes in an ða; kÞ-clique
970must have different colors. As a result, the number of colors
971of the nodes in R, denoted by colorðRÞ, is an upper bound
972of the size of the maximum ða; kÞ-clique contained in R.
973Note that since colorðRÞ is typically much smaller than jRj,
974the color-based pruning rule is more effective than the size-
975based pruning rule.
976In Algorithm 4, we can use jIj þ colorðR n IÞ as an
977upper bound for pruning. Specifically, we compute jIj þ
978colorðR n IÞ after obtaining the dake-core R in line 9 of Algo-
979rithm 4. If jIj þ colorðR n IÞ is no larger than r, the algorithm
980can prune the current search subspace ðR; IÞ. Note that for

LI ET AL.: SIGNED CLIQUE SEARCH IN SIGNED NETWORKS: CONCEPTS AND ALGORITHMS 9

IEE
E P

ro
of

981 an efficient implementation, we only invoke the degree-
982 ordering based greedy coloring algorithm once, and com-
983 pute colorðR n IÞ in each recursion based on the same color-
984 ing result. Since the degree-ordering based greedy coloring
985 algorithm can be implemented in linear time w.r.t. the size
986 of the signed graph [20] and computing colorðR n IÞ can be
987 done in OðjcolorðR n IÞjÞ time, the color-based pruning rule
988 is very efficient in practice.
989 Negative-Degree Based Bound. The color-based bound only
990 considers the clique constraint which ignores the negative-
991 edge constraint. Here we develop a tighter upper bound,
992 termed as a negative-degree based bound, on the basis
993 of both the clique and negative-edge constraints. Let
994 d�u ðIÞ , jfvjv 2 I; and v 2 N�u gj be the negative degree of a
995 node u w.r.t. the nodes set I. For any node u 2 I, if it is con-
996 tained in an ða; kÞ-clique, u cannot have k� d�u ðIÞ negative
997 neighbors in R n I by the negative-edge constraint. There-
998 fore, if I is contained in an ða; kÞ-clique, the total number of
999 negative links from a node in I to a node in R n I must be

1000 no larger than sumðIÞ , kjIj �P
u2Ifd�u ðIÞg.

1001 To derive the upper bound, we first assign a color to each
1002 node in the signed graph G. Let t be the number of colors in
1003 the nodes set R n I, i.e., t ¼ colorðR n IÞ. Clearly, we can clas-
1004 sify the nodes in R n I into t color groups, denoted by
1005 X 1; . . . ;X t, such that the nodes in a color group X i (1 � i � t)
1006 have the same color. Let v�i , argminv2X i

fd�v ðIÞg be the node
1007 in X i that has the smallest negative degree w.r.t. I. Then, we
1008 sort the nodes fv�1; . . . ; v�t g in a non-decreasing order based on
1009 d�v�

i
ðIÞ. Suppose without loss of generality that d�v�

1
ðIÞ �

1010 d�v�
2
ðIÞ � � � � � d�v�t

ðIÞ. Let psumðiÞ ,
Pi

j¼1 d
�
v�
j
ðIÞ be the prefix

1011 sum of the negative-degree array ½d�v�
1
ðIÞ; d�v�

2
ðIÞ; . . . ; d�v�t ðIÞ	.

1012 Then, we define �c as

�c , argmaxifpsumðiÞ � sumðIÞg; if psumðtÞ > sumðIÞ
t; otherwise:

�

(1)
10141014

1015 Based on Eq. (1), we have the following result.

1016 Lemma 5. For any search subspace ðR; IÞ, jIj þ �c is an upper
1017 bound of the size of the maximum ða; kÞ-clique in ðR; IÞ.
1018 Proof. We can prove this lemma by contradiction. Let C be
1019 an ða; kÞ-clique in the search subspace ðR; IÞ. Suppose to
1020 the contrary that jCj > jIj þ �c. Then, since C contains I,
1021 we have jC n Ij > �c. Since C is a clique, the nodes in C n I
1022 must have different colors. As a result, we have
1023

P
v2CnIfd�u ðIÞg � psumðjC n IjÞ > psumð�cÞ by definition.

1024 If psumðtÞ > sumðIÞ, we have
P

v2CnIfd�u ðIÞg > sumðIÞ
1025 by Eq. (1), violating the negative-edge constraint. Hence,
1026 C is not a valid ða; kÞ-clique in this case, which is a contra-
1027 diction. If psumðtÞ � sumðIÞ, we have �c ¼ t. Since the size
1028 of the largest ða; kÞ-clique in ðR; IÞ must be no larger than
1029 jIj þ t, we have jCj � jIj þ �c, which contradicts our
1030 assumption. tu
1031 Note that the negative-degree based bound is tighter
1032 than the color-based bound, because �c � colorðR n IÞ. Let
1033 Re ¼

P
u2R du. Then, we can easily show that �c (Eq. (1)) can

1034 be computed in OðReÞ time after obtaining the colors of the
1035 nodes. Hence, the negative-degree based bound can also be
1036 efficiently obtained.

1037A Novel Supply-Demand Bound. Here we develop a novel
1038supply-demand upper bound which is tighter than the neg-
1039ative-degree based bound. Recall that for a node v 2 R n I,
1040d�v ðIÞ is the number of negative neighbors of v in I. That is
1041to say, v can supply at most d�v ðIÞ negative neighbors for the
1042nodes in I. Likewise, for a node u 2 I, k� d�u ðIÞ is the maxi-
1043mum number of negative neighbors in R n I that can link to
1044u by the negative-degree constraint. In other words, the
1045demand of negative neighbors of u is at most k� d�u ðIÞ. For
1046convenience, we define supðvÞ , d�v ðIÞ as the supply of nega-
1047tive neighbors of v for each v 2 R n I, and demðuÞ , k�
1048d�u ðIÞ as the demand of negative neighbors of u for each
1049u 2 I. Based on the supply-demand relationship of the nega-
1050tive degrees, we derive a novel upper bound as follows.
1051Algorithm 5 details the pseudo-code for computing the
1052supply-demand upper bound. First, we assume that there are
1053t color groups for all nodes in R n I, denoted by X1; . . . ;X t

1054(line 2). Similar to the negative-degree based bound, we
1055let v�i , argminv2X i

fsupðvÞg, and then sort the nodes
1056fv�1; . . . ; v�t g in a non-decreasing order based on supðv�i Þ
1057(lines 3-4). Suppose without loss of generality that
1058supðv�1Þ � supðv�2Þ � � � � � supðv�t Þ. Let Ih be the set of top-h
1059nodes in I with the largest demðuÞ for u 2 I. Then, we per-
1060form the following iterative supply-demand procedure to
1061derive an upper bound (lines 5-9). Specifically, for each
1062i ¼ 1; . . . ; t, we iteratively use a node v�i to supply a negative
1063neighbor for each node u 2 Isupðv�

i
Þ (i.e., adds a negative link

1064from v�i to u for each u 2 Isupðv�
i
Þ). After that, the demand of

1065negative neighbors for each u 2 Isupðv�
i
Þ decreases by 1. To

1066implement this procedure, we can first calculate Isupðv�
i
Þ

1067(line 6), and then decrease demðuÞ by 1 for each u 2 Isupðv�
i
Þ

1068(line 7). If there exists a node u such that demðuÞ < 0, the
1069iterative supply-demand procedure can early terminate
1070(line 8). Assume that the iterative supply-demand procedure
1071completes at the ĉþ 1th iteration. Then, we have the follow-
1072ing result.

1073Lemma 6. For any search subspace ðR; IÞ, jIj þ ĉ is an upper
1074bound of the size of the maximum ða; kÞ-clique in ðR; IÞ.
1075Proof. We prove this lemma by contradiction. Let C be an
1076ða; kÞ-clique in ðR; IÞ. Suppose that jCj > jIj þ ĉ. Then,
1077we have jC n Ij > ĉ, as C contains I. We sort the nodes in
1078C n I in a non-decreasing order based on supðvÞ (for
1079v 2 C n I). Let l ¼ jC n Ij > ĉ and C n I ¼ f~v1; . . . ; ~vlg
1080with supð~v1Þ � . . . ;� supð~vlÞ. Clearly, we have supð~viÞ �
1081supðv�i Þ for each i ¼ 1; . . . ; t by definition. Since C is a
1082ða; kÞ-clique, there exists a supply-demand relationship
1083between the nodes in C n I and the nodes in I, such that
1084each node ~vi 2 C n I must supply supð~viÞ negative neigh-
1085bors for the nodes in I. Recall that in the ith iteration of

1086Algorithm 5, we greedily supplies a negative neighbor

1087for the top-(supð~viÞ) nodes with the largest demðuÞ. Based
1088on such a greedy strategy, we can also establish a supply-
1089demand relationship between C n I and I, such that each

1090node ~vi 2 C n I supplies supð~viÞ negative neighbors for the
1091nodes in I. This result indicates that the number of itera-

1092tion of Algorithm 5 must be no less than jC n Ij. Thus, we

1093have jC n Ij � ĉ, which is a contradiction. tu
1094We analyze the time complexity of Algorithm 5 as fol-
1095lows. First, the algorithm takes OðReÞ (Re ¼

P
u2R du) to

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019

IEE
E P

ro
of1096 compute supðvÞ for each v 2 R n I and demðuÞ for each u 2 I

1097 after obtaining the colors of the nodes. Second, in each itera-
1098 tion, the algorithm takes OðjIjÞ time to compute Isupðv�

i
Þ

1099 using a linear-time integer sort algorithm (because demðuÞ
1100 is an integer for each u 2 I). Thus, the time complexity of
1101 Algorithm 5 is OðRe þ ĉjIjÞ, except the time cost for coloring
1102 the nodes. Since both ĉ and jIj are often very small, the time
1103 cost for computing the supply-demand bound is compara-
1104 ble to the time cost for deriving the negative-degree based
1105 bound. In addition, it is easy to verify that ĉ � �c, indicating
1106 that the supply-demand bound is tighter than the negative-
1107 degree based bound. Moreover, ĉ can be strictly smaller
1108 than �c as illustrated in the following example.

1109 Algorithm 5. sup-dem-bound (R, I)

1110 1: Compute supðvÞ for each v 2 R n I, and demðuÞ for each
1111 u 2 I;
1112 2: Let X1; . . . ;X t be the t color groups for all nodes in R n I;
1113 3: Compute v�i , argminv2X i

fsupðvÞg; ĉ 0;
1114 4: fv�1; . . . ; v�t g sort the t nodes v�i in a non-decreasing
1115 order by supðv�i Þ.
1116 5: for i ¼ 1 to t do
1117 6: Compute the top-(supðv�i Þ) nodes set Isupðv�i Þ;
1118 7: demðuÞ demðuÞ � 1 for each u 2 Isupðv�

i
Þ

1119 8: if there exists u such that demðuÞ < 0 then break;
1120 9: ĉ ĉþ 1;
1121 10: return jIj þ ĉ;

1122 Example 8. Consider a search subspace ðR; IÞ shown in
1123 Fig. 3, where R ¼ fv1; . . . ; v6g and I ¼ fv1; . . . ; v4g. The
1124 black and red edges represent the positive and negative
1125 edges respectively. Suppose that k ¼ 3. There are two
1126 color groups in R n I which contains v5 and v6 respec-
1127 tively. In this example, we can derive that supðv5Þ ¼ 3,
1128 supðv6Þ ¼ 3, demðv1Þ ¼ 1, demðv2Þ ¼ 1, demðv3Þ ¼ 3, and
1129 demðv4Þ ¼ 1. Clearly, we have sumðIÞ ¼ 6 and psumð2Þ ¼
1130 6, thus �c ¼ 2 and the negative-degree based bound is
1131 jIj þ �c ¼ 5. However, by Algorithm 5, we can derive that
1132 ĉ ¼ 1, thus the supply-demand bound is jIj þ ĉ ¼ 4,
1133 which is strictly tighter than the negative-degree based
1134 bound.

1135 Finding the Top-r Maximal ða; kÞ-Cliques. The proposed
1136 upper bounds can also be applied to speed up the algorithm
1137 for finding the top-r maximal ða; kÞ-cliques. Specifically, in
1138 line 12 of Algorithm 4, when obtaining r maximal ða; kÞ-
1139 cliques, the algorithm maintains the minimum size over all r
1140 results. Suppose that the minimum size is r. Then, the algo-
1141 rithm computes the three proposed upper bounds in the
1142 search subspace ðR; IÞ. If one of an upper bound is smaller
1143 than r, the current search subspace ðR; IÞ can be pruned. This

1144is because in this case, the results obtained in the current
1145search subspace cannot contain a maximal ða; kÞ-clique that is
1146larger than the top-r results. The experimental results show
1147that our algorithm ismuch faster at finding the top-rmaximal
1148ða; kÞ-cliques compared to enumerating all the results.

11496 EXPERIMENTS

1150In this section, we conduct extensive experiments to evalu-
1151ate the efficiency and effectiveness of our algorithms. We
1152implement two algorithms MCBasic and MCNew to com-
1153pute maximal constrained dake-cores. We also implement
1154two algorithms MSCE-R and MSCE-G to compute all maxi-
1155mal ða; kÞ-cliques. MSCE-R is essentially Algorithm 4 with
1156a random node-selection strategy, while MSCE-G is Algo-
1157rithm 4 with a greedy node-selection strategy (see Section 4
1158for details). Since no existing algorithm can be applied to
1159enumerate signed cliques, we use MSCE-R as the baseline
1160for efficiency testing. We also implement two algorithms
1161MSC and MSCþ for computing the maximum ða; kÞ-clique
1162(or the top-r maximal ða; kÞ-cliques). MSC is the MSCE-G
1163algorithm with the size-based pruning technique, while
1164MSCþ is the MSCE-G algorithm with three upper bound-
1165ing techniques developed in Section 5. Section 6.2 compares
1166the effectiveness of our signed clique model with three other
1167community models. All algorithms are implemented in C+
1168+. We conduct all experiments on a PC with a 2.4 GHz Xeon
1169CPU and 16 GB memory running Red Hat Linux 6.4.
1170Datasets. We make use of five real-world datasets in our
1171experiments. Table 1 provides the statistics, where the last
1172column denotes the maximum k-core number of the net-
1173work. Slashdot and Wiki are signed networks. DBLP is a co-
1174authorship network, where each node denotes an author
1175and an edge ðu; vÞ means that u and v co-authored at least
1176one paper. To create a signed network for DBLP, we assign
1177“+” to an edge ðu; vÞ if the number of papers co-authored by
1178u and v is no less than the threshold t, otherwise we assign
1179“-” to ðu; vÞ. In all experiments, we set t as the average num-
1180ber of papers co-authored by two researchers (t ¼ 1:427 in
1181our dataset). Both Youtube and Pokec are social networks.
1182We generate a signed network for each by randomly pick-
1183ing 30 percent of the edges as the negative edges and
1184the remaining edges as positive edges. Slashdot, DBLP,
1185Youtube, and Pokec are downloaded from the Stanford net-
1186work dataset collection (http://snap.stanford.edu). Wiki is
1187downloaded from the Koblenz network collection (http://
1188konect.uni-koblenz.de/).
1189Parameters. There are two parameters in our algorithms: a
1190and k. The parameter a is selected from the interval ½2; 7	
1191with a default value of a ¼ 4; k is chosen from the interval
1192½1; 6	 with a default value of k ¼ 3. Unless otherwise

Fig. 3. Illustration of the tightness of the supply-demand bound.

TABLE 1
Datasets

Dataset n ¼ jV j m ¼ jEj jEþj jE�j kmax

Slashdot 82,144 500,481 382,882 117,599 54
Wiki 138,592 715,883 631,546 84,337 55
DBLP 1,314,050 5,362,414 1,245,522 4,116,892 118
Youtube 1,157,827 2,987,624 2,090,338 897,286 51
Pokec 1,632,803 30,622,564 21,355,492 9,267,072 47

LI ET AL.: SIGNED CLIQUE SEARCH IN SIGNED NETWORKS: CONCEPTS AND ALGORITHMS 11

http://snap.stanford.edu
http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/

IEE
E P

ro
of

1193 specified, the value of the other parameter is set to its
1194 default value when varying a parameter.

1195 6.1 Efficiency Testing

1196 Exp-1: Comparison Between MCBasic and MCNew. Fig. 4
1197 shows the efficiency of MCBasic and MCNew on Slashdot
1198 and DBLP datasets. Similar results can also be observed for
1199 the other datasets. Both MCBasic and MCNew are very effi-
1200 cient. MCNew consistently outperforms MCBasic with all
1201 parameter settings. For example, on Slashdot, MCNew is
1202 four times faster than MCBasic when a ¼ 2 and k ¼ 3. In
1203 general, the running time of both MCBasic and MCNew
1204 decrease with an increasing a and k. This is because the
1205 neighbor-core constraint of the maximal constrained
1206 dake-core (Definition 3) grows stronger when a and k are
1207 large, which gives rise to strong pruning performance in
1208 both MCBasic and MCNew. It is worth noting that our algo-
1209 rithms are fairly fast in DBLP because the positive-edge net-
1210 work in DBLP is very sparse. These results confirm our
1211 theoretical analysis in Section 3.
1212 Exp-2: The Size of Maximal Constrained dake-Cores. In this
1213 experiment, we study the total number of nodes of the max-
1214 imal constrained dake-cores. To this end, we use MCNew to
1215 compute the maximal constrained dake-cores, as it is more
1216 efficient than MCBasic. Fig. 5 shows the results for the
1217 Slashdot and DBLP datasets. Similar results can be also
1218 observed for the other datasets. As desired, the number of

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

12351236nodes of the maximal constrained dake-cores decreases with
1237an increasing a and k. Moreover, we observe that the total
1238number of nodes of the maximal constrained dake-cores is
1239much smaller than the number of nodes of the graph. For
1240instance, in Fig. 5a, when a ¼ 4 and k ¼ 3, the total number
1241of nodes of maximal constrained dake-cores is only 422, but
1242the entire graph size is 82,144. These results indicate that
1243the proposed graph reduction technique can drastically
1244prune unpromising nodes to identify the signed cliques.
1245Exp-3: Results of Enumerating all Signed Cliques. In this
1246experiment, we study the efficiency of MSCE-R and
1247MSCE-G for enumerating all signed cliques. We limit the
1248maximal running time to 3,600 seconds for both MSCE-R
1249and MSCE-G, because MSCE-R may be intractable with
1250some parameter settings due to the NP-hardness of our
1251problem. Fig. 6 reports the efficiency of these algorithms
1252with varying values for a and k. From Fig. 6, we can see that
1253MSCE-G is at least one order of magnitude faster than
1254MSCE-R on the Slashdot, Wiki, and DBLP datasets with
1255most parameter settings. For example, when a ¼ 4 and
1256k ¼ 3,MSCE-G takes 54 seconds to enumerate all signed cli-
1257ques on Slashdot, while MSCE-R does not terminate within
12583,600 seconds. On Youtube and Pokec, MSCE-G consis-
1259tently outperforms MSCE-R. We can also clearly observe
1260that MSCE-G is tractable on all datasets with almost all
1261parameter settings. MSCE-R, however, is only tractable on
1262the Youtube dataset. These results confirm that the greedy

Fig. 4. Efficiency of MCBasic and MCNew.
Fig. 5. The total number of nodes of maximal constrained dake-cores.

Fig. 6. Efficiency of our algorithms for enumerating all signed cliques.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019

IEE
E P

ro
of

1263 node-selection strategy in Algorithm 4 is significantly better
1264 than the random node-selection strategy.
1265 Generally, the running time of our algorithms drops with
1266 an increasing a and k. This is because the positive-edge con-
1267 straint of maximal ða; kÞ-clique is strong for large values of
1268 a and k, thus enhancing the pruning power of our algo-
1269 rithms. Interestingly, in some cases, the running time of
1270 MSCE-G does not necessarily decrease when k increases.
1271 For example, in Fig. 6h, when k � 2, MSCE-G’s running
1272 time increases as k increases on DBLP. This could be
1273 because MSCE-G’s pruning power may be dominated by
1274 negative-edge pruning when k � 2. Since (i) the negative-
1275 edge constraint of maximal ða; kÞ-clique is relatively weak
1276 for a large k and (ii) DBLP has a relatively large kmax value
1277 (see Table 1), the number of signed cliques can be very
1278 large. Therefore, in this case, the pruning power ofMSCE-G
1279 decreases when k increases. However, on the other datasets,
1280 the kmax values are relatively small and the pruning power
1281 of our algorithm may be dominated by the positive-edge
1282 constraint, thus the running time of MSCE-G decreases as k
1283 increases.
1284 Exp-4: The Number of Maximal ða; kÞ-Cliques. Fig. 7 shows
1285 the number of maximal ða; kÞ-cliques on the Slashdot and
1286 DBLP datasets. Similar results can also be derived on the
1287 other datasets. On Slashdot, the number of signed cliques
1288 decreases as both a and k increases, because the positive-
1289 edge constraint (see Definition 1) is strong if k is large. On
1290 DBLP, however, the number of signed cliques increases
1291 with an increasing k. The reason could be that on DBLP, the
1292 negative-edge constraint of the maximal ða; kÞ-clique may
1293 dominate its positive-edge constraint. With a large k, the
1294 negative-edge constraint is relatively weak. Thus, the num-
1295 ber of signed cliques increases with increasing k. These
1296 results are consistent with the results observed in Exp-3.

1298

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

13151316Exp-5: Memory Overhead. Fig. 8 reports the memory over-
1317head of MSCE-G for all datasets. The results demonstrate
1318that the memory usage of MSCE-G is slightly higher than
1319the graph size but clearly lower than twice the size of the
1320graph. These results confirm the linear space complexity of
1321MSCE-G.
1322Exp-6: Comparison Between MSC and MSCþ. Here we
1323evaluate the efficiency of MSC and MSCþ for finding the
1324maximum ða; kÞ-clique and identifying the top-r maximal
1325ða; kÞ-cliques, respectively. In this experiment, r is selected
1326from an interval ½1; 50	. When varying a and k, r is set to a
1327default value 30. Fig. 9 shows the efficiency of MSC and
1328MSCþ with varying k on the Slashdot and Wiki datasets.
1329Similar results can also be observed on the other datasets.
1330As can be seen, MSCþ consistently outperforms MSC with
1331varying k on both Slashdot and Wiki, due to the effective
1332upper bounds developed in Section 5. For example, MSCþ
1333only takes 3.5 seconds to identify the maximum ða; kÞ-clique
1334on Slashdot given that k ¼ 3, while MSC consumes near 5
1335seconds under the same parameter setting. We can also
1336observe that the upper bounds used in MSCþ do not offer
1337significant benefits on the Wiki dataset. This is because Wiki
1338contains few negative edges, resulting in that both the nega-
1339tive-degree based bound and the supply-demand bound
1340are not very effective. As desired, the running time of both
1341MSC and MSCþ decreases as k increases, because the nega-
1342tive-edge constraint is strong for a large k. Fig. 10 depicts
1343the results with varying a on Slashdot and Wiki. The results
1344on the other datasets are consistent. Similarly, we can see
1345that MSCþ is significantly faster than MSC on Slashdot,
1346and it slightly outperforms MSC on Wiki when varying a.
1347These results indicate that our newly-developed upper
1348bounds are indeed more effective than the size-based upper
1349bound for pruning unpromising search subspaces in finding
1350the maximum ða; kÞ-clique or the top-r maximal ða; kÞ-
1351cliques (especially for signed graphs with many negative
1352edges).
1353We also evaluate the efficiency of MSC and MSCþ with
1354varying r. The results on Slashdot and Wiki are reported in
1355Fig. 11. As desired, the running time of both MSC and
1356MSCþ increases as r increases. We can also see that MSCþ
1357consistently outperformsMSC for all r on both Slashdot and

Fig. 7. The number of maximal ða; kÞ-cliques.

Fig. 8. Memory overhead of MSCE-G.

Fig. 9. Comparison between MSC and MSCþ with varying k.

LI ET AL.: SIGNED CLIQUE SEARCH IN SIGNED NETWORKS: CONCEPTS AND ALGORITHMS 13

IEE
E P

ro
of

1358 Wiki. Compared to MSCE-G for enumerating all maximal
1359 ða; kÞ-cliques (Fig. 6), both MSC and MSCþ take substan-
1360 tially less time to compute top-r signed cliques. For example,
1361 when a ¼ 4 and k ¼ 3, MSC and MSCþ takes 4.7 and 4 sec-
1362 onds on Slashdot to find the top-30 results, respectively.
1363 However, it takes 54 seconds to enumerate all the signed cli-
1364 ques on Slashdot. These results demonstrate the high effi-
1365 ciency of our algorithms for identifying the top-r results.
1366 Exp-7: Scalability Testing.Wemake use of the largest data-
1367 set Pokec to test the scalability of MSCE-G, MSC , and
1368 MSCþ. Specifically, we generate four subgraphs by ran-
1369 domly sampling 20-80 percent of the edges from Pokec and
1370 test the time costs of our algorithms on these subgraphs.
1371 Fig. 12 depicts the scalability results using the default
1372 parameter setting. The time costs of all algorithms increase
1373 smoothly with a varying jV j or jEj in both tests. We also
1374 find that both MSC and MSCþ show near-linear scalability
1375 in identifying the top-r results. These results suggest that
1376 our algorithms are scalable when handling large real-world
1377 signed networks.

1378 6.2 Effectiveness Testing

1379 To measure the quality of a cohesive subgraph in signed
1380 networks, we propose an intuitive metric called signed con-
1381 ductance, based on the classic conductance in graph theory
1382 [13]. Let S be a set of nodes. The signed conductance of S is
1383 defined below:

fðSÞ ,
P

u2S;v2V nS A
þ
uv

minfPu2S dþu ;
P

u2V nS dþu g
�

P
u2S;v2V nS A

�
uv

minfPu2S d�u ;
P

u2V nS d�u g
:

(2)
13851385

1386

1388

1388

1389

1390

1391

1392

1393

1394

1395

13961397The first (second) part in Eq. (2) is the classic conductance of
1398S [13] defined on the signed network without considering
1399negative (positive) edges. For convenience, we refer to the
1400first (second) part as the positive-edge conductance (nega-
1401tive-edge conductance). Intuitively, an interesting cohesive
1402subgraph (e.g., a trust community) in a signed network
1403should have many positive intra-edges and few negative
1404intra-edges. It should also have many negative inter-edges
1405and few positive inter-edges. In other words, an interesting
1406cohesive subgraph in the signed network should have a low
1407positive-edge conductance and a high negative-edge con-
1408ductance. Clearly, the definition of signed conductance in
1409Eq. (2) captures this intuition. Note that the signed conduc-
1410tance fðSÞ falls into a range ½�1; 1	. An interesting cohesive
1411subgraph in a signed network should has a small signed
1412conductance.
1413We compare our signed clique model, denoted by
1414SignedClique, with three intuitive baselines: Core [9],
1415SignedCore [5], and TClique [22]. Core is a method that
1416computes the dake-core in the signed network after remov-
1417ing all negative edges. SignedCore is an existing signed
1418community model proposed in [5], which has been success-
1419fully applied to analyze trust dynamics in signed networks.
1420SignedCore, as defined in [5], has two parameters b and g.
1421It requires that every node in the SignedCore has at least b
1422positive neighbors and also has at least g negative neigh-
1423bors. Thus, to match the parameters between SignedCore
1424and SignedClique, we set b ¼ dake and g ¼ k in our experi-
1425ments. TClique is the state-of-the-art signed community
1426model proposed in [22] which aims to identify maximal cli-
1427ques in the signed network without considering negative
1428edges. In [22], the TClique model is considered to be a
1429trusted clique, and its size is limited to k. For a fair compari-
1430son, we drop this size constraint in TClique with the aim of
1431finding all maximal trusted cliques.
1432Exp-8: Signed Conductance of Various Models. We compute
1433the average signed conductance of the top-r communities
1434returned by each method. Table 2 reports the results
1435obtained with the default parameter settings (i.e., a ¼ 4,
1436k ¼ 3, and r ¼ 30). Similar results can also be obtained with

Fig. 10. Comparison between MSC and MSCþ with varying a.

Fig. 11. Comparison between MSC and MSCþ with varying r.

Fig. 12. Scalability testing (Pokec, a ¼ 4, k ¼ 3, r ¼ 30).

TABLE 2
Signed Conductance of Various Models

Datasets Core SignedCore TClique SignedClique

Slashdot �0.0252 �0.0764 �0.0838 �0.0863
Wiki 0.0835 0.0252 �0.0124 �0.0218
DBLP �0.4485 �0.4946 �0.4856 �0.5154
Youtube �0.0201 �0.0158 �0.0233 �0.0237
Pokec �0.0235 �0.0149 �0.1345 �0.2262

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019

IEE
E P

ro
of

1437 other parameter settings. From Table 2, we can see that
1438 SignedClique consistently outperforms all the baselines.
1439 The results for SignedCore and TClique are comparable,
1440 with both performing slightly better than Core. The reasons
1441 are as follows. Compared to other models, SignedClique not
1442 only requires every node that has dake positive intra-neigh-
1443 bors, but it also limits the number of negative intra-neigh-
1444 bors to be smaller than k. Therefore, there may be many
1445 positive edges in the community, with a few positive edges
1446 that can span different communities, resulting in a small
1447 positive-edge conductance. On the other hand, there are not
1448 too many negative edges in our community (due to the neg-
1449 ative-edge constraint). Hence, there may be many negative
1450 edges spanning different communities, which gives rise to a
1451 large negative-edge conductance. As a consequence, the
1452 signed conductance of our model should be small. These
1453 results indicate that the proposed approach is indeed effec-
1454 tive for modeling cohesive subgraphs in signed networks.
1455 Exp-9: Case Study on DBLP. We conduct a case study
1456 using the DBLP dataset to compare the effectiveness of vari-
1457 ous models. Recall that, in DBLP, a negative (positive) edge
1458 implies that two researchers have co-authored at least t

1459 papers, where t ¼ 1:427 is the average number of papers co-
1460 authored by the researchers. A negative (positive) edge in
1461 DBLP can be considered to be a weak (strong) connection
1462 between two authors. Fig. 13 shows the communities of Pro-
1463 fessors Jiawei Han and H. V. Jagadish derived by TClique
1464 and SignedClique with the parameters a ¼ 2 and k ¼ 2.
1465 Note that we test both Core and SignedCore using many
1466 parameter settings, but the community size (including Jia-
1467 wei Han or H. V. Jagadish) is either very large (more than
1468 10,000 nodes), or no community is found, so those results
1469 have not been included. The reason could be that the k-core
1470 constraint in both Core and SignedCore is relatively loose;
1471 therefore, these models fail to discover compact communi-
1472 ties. As shown in Fig. 13, our model is able to find strongly-
1473 cooperative and compact communities with a tolerance to a
1474 few negative edges, whereas the TClique model may miss
1475 some important members of the community. For example,
1476 in Figs. 13a and 13b, TClique misses Professors Pei Jian
1477 and Charu C. Aggarwal. However, with a few negative
1478 edges, the communities in Figs. 13d and 13e obtained by
1479 SignedClique consist of Professors Pei Jian and Charu C.
1480 Aggarwal. Similar results can also be observed in Figs. 13c

1481

1482

1483

1484

1485

1486

1487

1488

1489

14901491and 13f. These results indicate that our model is more effec-
1492tive than the baselines in identifying intuitive and compact
1493communities in signed networks.
1494Exp-10: Protein Complex Discovery. In signed protein-pro-
1495tein interaction networks, a protein complex typically
1496denotes a densely-connected signed subgraph [3]. In this
1497experiment, we compare the effectiveness of SignedClique
1498with those of the other baseline models for protein complex
1499discovery. We collect a real-world signed PPI network,
1500called FlySign, from [23]. The FlySign network consists of
15013,352 nodes and 6,094 signed edges (4,112 positive edges
1502and 1982 negative edges). The ground-truth complexes in
1503FlySign can be obtained by using the complex enrichment
1504analysis tool [3], [24]. Based on the ground-truth complexes,
1505we are able to compute the precision for different models.
1506Specifically, for each complex obtained by various models,
1507the precision is computed by TP/(TP+FP), where TP
1508denotes the number of true-positive nodes and FP denotes
1509the number of false-positive nodes. We compute the aver-
1510age precision of the top-30 complexes identified by different
1511models. The results are shown in Fig. 14. We can see that
1512SignedClique significantly outperforms the other baselines
1513under all parameter settings. In general, the clique-based
1514models (SignedClique and TClique) perform much better
1515than the core-based models (SignedCore and Core). The
1516reason could be that the results of the clique-based models
1517are much more compact than those of the core-based mod-
1518els. For example, when a ¼ 5 and k ¼ 3, the precision of
1519SignedClique and TClique is 0.71 and 0.48 respectively,
1520while the precision of SignedCore and Core is 0 and 0.34
1521respectively. Note that SignedCore may return an empty
1522subgraph when k is large, because the SignedCore model
1523imposes a strong negative-edge constraint which requires
1524the number of negative edges no less than k [5]. As a result,
1525the precision of SignedCore can be 0 when k is large. These
1526results further confirm the effectiveness of SignedClique.
1527Exp-11: Structural Balance of SignedClique. We analyze
1528the communities obtained by SignedClique using the struc-
1529tural balance theory in signed network [6]. Specifically, by
1530the strong structural balance theory [6], the triangles in a
1531signed network are classified into balanced triangles and
1532unbalanced triangles. The balanced triangles contain 1 or 3
1533positive edges, while the unbalance triangles consist of 0 or
15342 positive edges. The weak structural balance theory further
1535assumes that only triangles with 2 positive edges are called
1536unbalanced triangles, and all other types of triangles are bal-
1537anced triangles. The structural balance theory indicates that
1538a good community in a signed network should include
1539many balanced triangles and a few unbalanced triangles.
1540Fig. 15 shows the average ratio of balanced triangles con-
1541tained in the top-30 communities of SignedClique using the

Fig. 13. Comparison of various models (a ¼ 2 and k ¼ 2, black edges
are positive edges and red edges denote negative edges).

Fig. 14. Precision of different community models (FlySign).

LI ET AL.: SIGNED CLIQUE SEARCH IN SIGNED NETWORKS: CONCEPTS AND ALGORITHMS 15

IEE
E P

ro
of1542 default parameters a ¼ 4 and k ¼ 3. As can be seen, the ratio

1543 of balanced triangles obtained by SignedClique is no less
1544 than 0.7 on all datasets. More importantly, on the real-world
1545 signed networks Slashdot and Wiki, the ratios are even
1546 close to 1. These results indicate that SignedClique can be
1547 used to detect structurally balanced communities in signed
1548 networks.

1549 7 RELATED WORK

1550 Community Modeling. Communities in a graph are often rep-
1551 resented by densely-connected subgraphs. Many commu-
1552 nity models exist in the literature. Notable examples
1553 include the maximal clique model [8], [14], k-core [9], [25],
1554 k-truss [2], [10], [19], maximal k-edge connected subgraph
1555 [26], [27], quasi-clique [28], locally densest subgraph [29],
1556 and so on. More recently, many different community mod-
1557 els have been proposed for attributed graphs. For example,
1558 Fang et al. [30] proposed an attributed community model
1559 based on k-core. Huang and Lakshmanan [31] presented an
1560 attributed truss model to find the community with highest
1561 attribute relevance score w.r.t. query nodes. Beyond attrib-
1562 uted communities, Li et al. [32] introduced an influential
1563 community model to capture the influence of a community.
1564 More recently, Li et al. [33] proposed a skyline community
1565 model for seeking communities in multi-valued networks.
1566 The same group also proposed a persistent community
1567 model to detect persistent communities in temporal graphs
1568 [34]. All the above-mentioned community models are tai-
1569 lored to unsigned networks. To define a cohesive subgraph
1570 model in signed networks, Giatsidis et al. [5] introduced a
1571 signed core model, which was originally proposed to study
1572 the trust dynamic in signed networks. However, this model
1573 is not able to intuitively reveal a community in a signed net-
1574 work because it requires the number of negative edges to be
1575 larger than a given threshold, which may result in the
1576 nodes in the community having many negative neighbors.
1577 Hao et al. [22] proposed a trusted clique model, which
1578 completely ignores the negative edges in the signed net-
1579 work. Unlike previous models, the proposed signed clique
1580 model limits the number of negative neighbors for each
1581 node in the community. Thus, it is better to reflect a commu-
1582 nity in signed networks, as confirmed in our experiments.
1583 [35] contains a short version of this work in which we focus
1584 mainly on enumerating all maximal ða; kÞ-cliques. In this
1585 work, we also investigate the problem of finding the maxi-
1586 mum ða; kÞ-clique, and develop an efficient algorithm to
1587 identify the maximum ða; kÞ-clique based on three care-
1588 fully-designed upper bounds.

1589Signed Network Analysis. After a seminal work [6],
1590signed network analysis has attracted much attention in
1591recent years. Notable applications include link prediction
1592[36], [37], [38], recommendation systems [39], [40], cluster-
1593ing and community detection [3], [7], [41], [42], and antag-
1594onistic community analysis [43], [44]. An excellent survey
1595on signed network analysis can be found in [45]. Our
1596work is closely related to clustering and community
1597detection. The aim in solving this problem is to partition
1598the signed network into several densely-connected com-
1599ponents [7], [41]. Most existing solutions involve a compli-
1600cated optimization procedure (e.g., [3], [42]), and therefore
1601they cannot handle million-sized signed networks. More-
1602over, they also lack a clear and cohesive subgraph model
1603to characterize the resulting communities. Unlike these
1604studies, our work provides a cohesive subgraph model
1605that could be useful for community discovery and search
1606related applications in signed networks [1]. Further, the
1607proposed algorithm is scalable to million-sized signed
1608networks.

16098 CONCLUSION

1610In this paper, we introduce a novel model, called maximal
1611ða; kÞ-clique, to characterize a cohesive subgraph in signed
1612networks. To enumerate all maximal ða; kÞ-cliques, we first
1613propose an efficient signed network reduction algorithm to
1614substantially prune the signed network. The time complexity
1615of our technique is OðdmÞ, where d denotes the arboricity of
1616the signed network. Then, we develop a new branch and
1617bound enumeration algorithmwith several powerful pruning
1618techniques to efficiently enumerate all maximal ða; kÞ-cliques.
1619We also devise an efficient maximum ða; kÞ-clique search
1620algorithm with three novel upper-bounding techniques.
1621Comprehensive experiments on five large real-life networks
1622demonstrate the efficiency, scalability, and effectiveness of
1623our algorithms.

1624ACKNOWLEDGMENTS

1625This work was partially supported by (i) NSFC Grants
162661772346, 61732003, U1809206, 61772091, 61802035;
1627(ii) National Key R&D Program of China 2018YFB1004402;
1628(iii) Beijing Institute of Technology Research Fund Program
1629for Young Scholars; (iv) Research Grants Council of the
1630Hong Kong SAR, China No. 14221716 and 14203618; (v)
1631ARC Discovery Project Grant DP160101513; and (vi) MOE,
1632Singapore under grant MOE2015-T2-2-069 and NUS, Singa-
1633pore under an SUG.

1634REFERENCES

1635[1] M. Sozio and A. Gionis, “The community-search problem and
1636how to plan a successful cocktail party,” in Proc. ACM SIGKDD
1637Int. Conf. Knowl. Discovery Data Mining, 2010, pp. 939–948.
1638[2] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-
1639truss community in large and dynamic graphs,” in Proc. ACM
1640SIGMOD Int. Conf. Manage. Data, 2014, pp. 1311–1322.
1641[3] L. Ou-Yang, D. Dai, and X. Zhang, “Detecting protein complexes
1642from signed protein-protein interaction networks,” IEEE/ACM
1643Trans. Comput. Biol. Bioinf., vol. 12, no. 6, pp. 1333–1344, Nov./
1644Dec. 2015.
1645[4] D. Gibson, R. Kumar, and A. Tomkins, “Discovering large dense
1646subgraphs in massive graphs,” in Proc. Int. Conf. Very Large Data
1647Bases, 2005, pp. 721–732.

Fig. 15. The ratio of balanced triangles of SignedClique. WBTR (SBTR)
denotes the ratio of weak (strong) structurally balanced triangles.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019

IEE
E P

ro
of

1648 [5] C.Giatsidis, B. Cautis, S.Maniu,D.M. Thilikos, andM.Vazirgiannis,
1649 “Quantifying trust dynamics in signed graphs, the S-cores
1650 approach,” in Proc. SIAM Int. Conf. DataMining, 2014, pp. 668–676.
1651 [6] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, “Signed net-
1652 works in social media,” in Proc. SIGCHI Conf. Human Factors Com-
1653 put. Syst., 2010, pp. 1361–1370.
1654 [7] B. Yang, W. K. Cheung, and J. Liu, “Community mining from
1655 signed social networks,” IEEE Trans. Knowl. Data Eng., vol. 19,
1656 no. 10, pp. 1333–1348, Oct. 2007.
1657 [8] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding maxi-
1658 mal cliques in massive networks,” ACM Trans. Database Syst.,
1659 vol. 36, no. 4, pp. 21:1–21:34, 2011.
1660 [9] S. B. Seidman, “Network structure and minimum degree,” Social
1661 Netw., vol. 5, no. 3, pp. 269–287, 1983.
1662 [10] J. Cohen, “Trusses: Cohesive subgraphs for social network analy-
1663 sis,” Fort Meade, MD, USA, National Security Agency, Tech. Rep.,
1664 2005.
1665 [11] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algo-
1666 rithms,” SIAM J. Comput., vol. 14, no. 1, pp. 210–223, 1985.
1667 [12] M. C. Lin, F. J. Soulignac, and J. L. Szwarcfiter, “Arboricity, h-
1668 index, and dynamic algorithms,” Theoretical Comput. Sci., vol. 426,
1669 pp. 75–90, 2012.
1670 [13] S. Galhotra, A. Bagchi, S. Bedathur, M. Ramanath, and V. Jain,
1671 “Tracking the conductance of rapidly evolving topic-subgraphs,”
1672 Proc. VLDB Endowment, vol. 8, no. 13, pp. 2170–2181, 2015.
1673 [14] C. Bron and J. Kerbosch, “Finding all cliques of an undirected
1674 graph (algorithm 457),” Commun. ACM, vol. 16, no. 9, pp. 575–576,
1675 1973.
1676 [15] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
1677 complexity for generating all maximal cliques and computational
1678 experiments,” Theoretical Comput. Sci., vol. 363, no. 1, pp. 28–42,
1679 2006.
1680 [16] D. Eppstein, M. L€offler, and D. Strash, “Listing all maximal cli-
1681 ques in large sparse real-world graphs,” ACM J. Exp. Algorithmics,
1682 vol. 18, 2013, Art. no. 3.1.
1683 [17] C. S. J. A. Nash-Williams, “Decomposition of finite graphs into
1684 forests,” J. London Math. Soc., vol. 39, no. 1, pp. 12–12, 1964.
1685 [18] X. Hu, Y. Tao, and C. Chung, “I/O-Efficient algorithms on triangle
1686 listing and counting,” ACM Trans. Database Syst., vol. 39, no. 4,
1687 pp. 27:1–27:30, 2014.
1688 [19] J. Wang and J. Cheng, “Truss decomposition in massive
1689 networks,” Proc. VLDB Endowment, vol. 5, no. 9, pp. 812–823, 2012.
1690 [20] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson,
1691 “Ordering heuristics for parallel graph coloring,” in Proc. Annu.
1692 ACM Symp. Parallelism Algorithms Archit., 2014, pp. 166–177.
1693 [21] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “Effective and
1694 efficient dynamic graph coloring,” Proc. VLDB Endowment, vol. 11,
1695 no. 3, pp. 338–351, 2017.
1696 [22] F. Hao, S. S. Yau, G. Min, and L. T. Yang, “Detecting k-balanced
1697 trusted cliques in signed social networks,” IEEE Internet Comput.,
1698 vol. 18, no. 2, pp. 24–31, Mar./Apr. 2014.
1699 [23] A.Vinayagam, J. Zirin, C. Roesel, Y.Hu,B.Yilmazel,A.A. Samsonova,
1700 R. A. Neumuller, S. E. Mohr, and N. Perrimon, “Integrating protein-
1701 protein interaction networks with phenotypes reveals signs of inter-
1702 actions,”NatureMethods, vol. 11, pp. 94–99, 2014.
1703 [24] A. Vinayagam, Y. Hu,M. Kulkarni, C. Roesel, R. Sopko, S. E. Mohr,
1704 and N. Perrimon, “Protein complex–based analysis framework for
1705 high-throughput data sets,” Sci. Signaling, vol. 6, no. 264, 2013,
1706 Art. no. rs5.
1707 [25] R. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large
1708 dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10,
1709 pp. 2453–2465, Oct. 2014.
1710 [26] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li, “Finding
1711 maximal k-edge-connected subgraphs from a large graph,” in
1712 Proc. Int. Conf. Extending Database Technol., 2012, pp. 480–491.
1713 [27] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, andW. Liang, “Efficiently
1714 computing k-edge connected components via graph decom-
1715 position,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013,
1716 pp. 205–216.
1717 [28] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of
1718 overlapping communities,” in Proc. ACM SIGMOD Int. Conf. Man-
1719 age. Data, 2013, pp. 277–288.
1720 [29] L. Qin, R. Li, L. Chang, and C. Zhang, “Locally densest subgraph
1721 discovery,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data
1722 Mining, 2015, pp. 965–974.
1723 [30] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search
1724 for large attributed graphs,” Proc. VLDB Endowment, vol. 9, no. 12,
1725 pp. 1233–1244, 2016.

1726[31] X. Huang and L. V. S. Lakshmanan, “Attribute-driven community
1727search,” Proc. VLDB Endowment, vol. 10, no. 9, pp. 949–960, 2017.
1728[32] R. Li, L. Qin, J. X. Yu, and R.Mao, “Influential community search in
1729large networks,” Proc. VLDB Endowment, vol. 8, no. 5, pp. 509–520,
17302015.
1731[33] R. Li, L. Qin, F. Ye, J. X. Yu, X. Xiao, N. Xiao, and Z. Zheng,
1732“Skyline community search in multi-valued networks,” in Proc.
1733ACM SIGMOD Int. Conf. Manage. Data, 2018, pp. 457–472.
1734[34] R. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community
1735search in temporal networks,” in Proc. IEEE Int. Conf. Data Eng.,
17362018, pp. 797–808.
1737[35] R. Li, Q. Dai, L. Qin, G. Wang, X. Xiao, J. X. Yu, and S. Qiao,
1738“Efficient signed clique search in signed networks,” in Proc. IEEE
1739Int. Conf. Data Eng., 2018, pp. 245–256.
1740[36] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, “Predicting
1741positive and negative links in online social networks,” in Proc. Int.
1742Conf. World Wide Web, 2010, pp. 641–650.
1743[37] J. Ye, H. Cheng, Z. Zhu, and M. Chen, “Predicting positive and
1744negative links in signed social networks by transfer learning,” in
1745Proc. Int. Conf. World Wide Web, 2013, pp. 1477–1488.
1746[38] D. Song and D. A. Meyer, “Recommending positive links in
1747signed social networks by optimizing a generalized AUC,” in
1748Proc. AAAI Conf. Artif. Intell., 2015, pp. 290–296.
1749[39] D. Song, D. A. Meyer, and D. Tao, “Efficient latent link recommen-
1750dation in signed networks,” in Proc. ACM SIGKDD Int. Conf.
1751Knowl. Discovery Data Mining, 2015, pp. 1105–1114.
1752[40] J. Tang, C. C. Aggarwal, and H. Liu, “Recommendations in signed
1753social networks,” inProc. Int. Conf.WorldWideWeb, 2016, pp. 31–40.
1754[41] P. Doreian and A. Mrvar, “Partitioning signed social networks,”
1755Social Netw., vol. 31, no. 1, pp. 1–11, 2009.
1756[42] J. Cadena, A. K. S. Vullikanti, and C. C. Aggarwal, “On dense sub-
1757graphs in signed network streams,” in Proc. IEEE Int. Conf. Data
1758Mining, 2016, pp. 51–60.
1759[43] M. Gao, E. Lim, D. Lo, and P. K. Prasetyo, “On detecting maximal
1760quasi antagonistic communities in signed graphs,” Data Mining
1761Knowl. Discovery, vol. 30, no. 1, pp. 99–146, 2016.
1762[44] L. Chu, Z. Wang, J. Pei, J. Wang, Z. Zhao, and E. Chen, “Finding
1763gangs in war from signed networks,” in Proc. ACM SIGKDD Int.
1764Conf. Knowl. Discovery Data Mining, 2016, pp. 1505–1514.
1765[45] J. Tang, Y. Chang, C. C. Aggarwal, and H. Liu, “A survey of
1766signed network mining in social media,” ACM Comput. Surveys,
1767vol. 49, no. 3, pp. 42:1–42:37, 2016.

1768Rong-Hua Li received the PhD degree from the
1769Chinese University of Hong Kong, in 2013. He is
1770currently an associate professor with the Beijing
1771Institute of Technology (BIT), Beijing, China.
1772Before joining BIT in 2018, he was an assistant
1773professor with Shenzhen University. His research
1774interests include graph data management and
1775mining, social network analysis, graph computa-
1776tion systems, and graph-based machine learning.

1777Qiangqiang Dai is working toward the master’s
1778degree at ShenzhenUniversity, Shenzhen, China.
1779Currently, he is also a research assistant with the
1780Beijing Institute of Technology, Beijing, China. His
1781research interests include graph data manage-
1782ment and mining, social network analysis, and
1783graph computation systems.

LI ET AL.: SIGNED CLIQUE SEARCH IN SIGNED NETWORKS: CONCEPTS AND ALGORITHMS 17

IEE
E P

ro
of

1784 Lu Qin received the bachelor’s degree from the
1785 Department of Computer Science and Technol-
1786 ogy, Renmin University of China, in 2006, and
1787 the PhD degree from the Department of Systems
1788 Engineering and Engineering Management, Chi-
1789 nese University of Hong Kong, in 2010. He is now
1790 a senior lecturer in the Centre of Quantum Com-
1791 putation and Intelligent Systems (QCIS), Univer-
1792 sity of Technology, Sydney (UTS). His research
1793 interests include parallel big graph processing,
1794 I/O efficient algorithms on massive graphs, and
1795 keyword search in graph data.

1796 Guoren Wang received the BSc, MSc, and PhD
1797 degrees from theDepartment of Computer Science,
1798 Northeastern University, China, in 1988, 1991, and
1799 1996, respectively. Currently, he is a professor with
1800 the Department of Computer Science, Northeastern
1801 University, China. His research interests include
1802 XML data management, query processing and opti-
1803 mization, bioinformatics, high dimensional indexing,
1804 parallel database systems, and cloud datamanage-
1805 ment. He has published more than 100 research
1806 papers.

1807 Xiaokui Xiao received the PhD degree in com-
1808 puter science from the Chinese University of Hong
1809 Kong, in 2008. He is currently an associate pro-
1810 fessor with the National University of Singapore
1811 (NUS), Singapore. Before joining NUS in 2018, he
1812 was an associate professor with Nanyang Tech-
1813 nological University (NTU). His research interests
1814 include data privacy, spatial databases, graph
1815 databases, and parallel computing.

1816Jeffery Xu Yu received the BE, ME, and PhD
1817degrees in computer science from the University
1818of Tsukuba, Japan, in 1985, 1987, and 1990,
1819respectively. He has held teaching positions with
1820the Institute of Information Sciences and Elec-
1821tronics, University of Tsukuba, and with the
1822Department of Computer Science, Australian
1823National University, Australia. Currently, he is a
1824professor with the Department of Systems Engi-
1825neering and Engineering Management, Chinese
1826University of Hong Kong, Hong Kong. His current
1827research interests include graph database, graph mining, keyword
1828search in relational databases, and social network analysis.

1829Shaojie Qiao received the BS and PhD degrees
1830from Sichuan University, Chengdu, China, in 2004
1831and 2009, respectively. From2007 to 2008, hewas
1832a visiting scholar with the School of Computing,
1833National University of Singapore. He is currently
1834a professor with the School of Cybersecurity,
1835Chengdu University of Information Technology,
1836Chengdu. He has led several research projects in
1837moving objects databases and trajectory data
1838mining. He authored more than 40 high-quality
1839papers and co-authored more than 90 papers. His
1840research interests include trajectory prediction and intelligent transporta-
1841tion systems.

1842" For more information on this or any other computing topic,
1843please visit our Digital Library at www.computer.org/publications/dlib.

18 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019

