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Let G be a graph and H be a certain connected subgraph of G . The H-structure connectivity 
κ(G; H) (resp. H-substructure connectivity κ s(G; H)) of G is the minimum number of 
a set of subgraphs F = {H1, H2, · · · , Hm} (resp. F = {H ′

1, H ′
2, · · · , H ′

m}) such that Hi is 
isomorphic to H (resp. H ′

i is a connected subgraph of H) for every 1 ≤ i ≤ m, and F ’s 
removal will disconnect G . For the k-ary n-cube Q k

n , the κ(Q k
n ; H) and κ s(Q k

n ; H) were 
determined for H ∈ {K1, K1,1, K1,2, K1,3}. In this paper, we show κ(Q k

n ; H) and κ s(Q k
n ; H)

for H ∈ {Pl, Cl} where 3 ≤ l ≤ 2n.
© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The design of interconnection networks is an integral part of parallel processing and distributed system. The choice of the 
interconnection network topology determines the performance of the system significantly. An interconnection network can 
be modeled as a simple connected graph with processors and links between processors as vertices and edges, respectively.

In a network, traditional connectivity is an important measure since it can correctly reflect the fault tolerance of network 
systems with few processors. However, it always underestimates the resilience of large networks. There is a discrepancy 
because the occurrence of events which would disrupt a large network after a few processor or link failures is highly 
unlikely. To overcome this shortcoming, several new concepts on the connectivity of graphs were posed. Harary [9] intro-
duced the concept of conditional connectivity by imposing some conditions on the connected components. Furthermore, 
Latifi et al. [11] generalized the concept conditional connectivity by introducing restricted h-connectivity. Following this 
trend, several kinds of conditional connectivity were proposed and studied in [7,10,20,22], such as g-extraconnectivity and 
R g -connectivity. The g-extraconnectivity of a graph G , denoted by κg(G), is the minimum cardinality of a set of nodes in 
G whose deletion disconnects G and leaves each remaining component with more than g nodes. The R g -connectivity of 
a graph G , denoted by κ g(G), is the minimum cardinality of a set of nodes in G , whose deletion disconnects G and each 
node of the remaining components has at least g neighbors. Later, Zhao and Yang [23,24] investigated the r-component 
connectivity cκr(G) of a non-complete graph G , which is the minimum number of vertices whose deletion results in a 
graph with at least r components. By the definitions above, we know that the g-extraconnectivity, the R g -connectivity and 
the r-component connectivity can be all regarded as a generalization of the traditional connectivity κ(G).

So far, most works on reliability and fault-tolerance have focused on the effect of individual nodes becoming faulty. 
However in reality, nodes that are linked could affect each other, and the neighbors of a faulty node might be more vul-
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nerable and have a higher probability of becoming faulty later. Also to be noted is that increasingly in today’s technology, 
networks and subnetworks are made into chips. That means if any node/nodes on the chip become faulty, the whole chip 
can be considered faulty. All these motivate the study of fault-tolerance from the perspective of some structures instead of 
basing on individual nodes. Under this consideration, Lin et al. [12] introduced the concept of structure connectivity and 
substructure connectivity of graphs.

The k-ary n-cube, denoted by Q k
n , is one of the most popular network topologies for building a multiprocessor system 

due to its desirable properties: it is node-symmetric and edge-symmetric [1]; it is Hamiltonian [2,5]. In recent years, k-ary 
n-cubes have been well studied and their basic topological and algorithmic properties are well understood, for example, 
cycle or path embedding [1,13,16,18,19], conditional diagnosability, fault tolerance [8,17,21], and so on. In this paper, we 
study the structure connectivity and substructure connectivity of Q k

n . Lin et al. [12] studied κ(Q n; H) and κ s(Q n; H) for the 
hypercube Q n and H ∈ {K1,1, K1,2, K1,3, C4}. And the result was also extended to the k-ary n-cube[14]. Moreover, Sabir and 
Meng[15] investigated the structure fault tolerance of hypercubes and folded hypercubes, that is, κ(Q n; H) and κ(F Q n; H)

for H ∈ {Pk, C2k}. In this paper, we consider similar problems for the k-ary n-cube Q k
n .

2. Preliminaries

For the definition and notation of graph theory, we follow [3]. The neighborhood NG (v) of a node v in a graph G = (V , E)

is the set of nodes adjacent to v . For S ⊂ V , the neighborhood NG (S) of S in G is defined as NG (S) = (∪v∈S NG(v)) − S . 
Let Pk = 〈v1, v2, · · · , vk〉 and Ck = 〈v1, v2, · · · , vk, v1〉 be a path and a cycle of order k, respectively. And we use P−1

k =
〈vk, vk−1, · · · , v1〉 to denote the reverse of Pk . For a subgraph H of a graph G , we use G − H to denote the subgraph of G
induced by V (G) − V (H). For a set F = {H1, H2, · · · , Hm}, where each Hi is isomorphic to a connected subgraph of G , we 
use G − F to denote the subgraph of G induced by V (G) − V (H1) − V (H2) − · · · − V (Hm).

A set F of subgraphs of G is a subgraph-cut of G if G − F is a disconnected or trivial graph. Let H be a sub-
graph of G . Then F is an H-structure-cut if F is a subgraph-cut, and every subgraph in F is isomorphic to H . The 
H-structure-connectivity of G , denoted by κ(G; H), is the minimum cardinality of all H-structure-cuts of G . Then F is 
an H-substructure-cut if F is a subgraph-cut, such that every subgraph in F is isomorphic to a connected subgraph of H . 
The H-substructure-connectivity of G , denoted by κ s(G; H), is the minimum cardinality of all H-substructure-cuts of G .

For k ≥ 3 and n ≥ 1, the k-ary n-cube Q k
n has kn nodes, each of which has the form x = xn−1xn−2 · · · x0 where xi ∈

{0, 1, · · · , k − 1} for 0 ≤ i ≤ n − 1. Two nodes x = xn−1xn−2 · · · x0 and y = yn−1 yn−2 · · · y0 in Q k
n are adjacent if and only if 

there exists an integer i such that (1) either yi = (xi + 1) mod k or yi = (xi − 1) mod k, and (2) x j = y j for each j �= i. In 
this case, we say that (x, y) is an i-dimensional edge. For any node x = xn−1xn−2 · · · x0 in Q k

n , we set (x)i+ = xi+
n−1xi+

n−2 · · · xi+
0

being the neighbor of x in dimension i of Q k
n where xi+

j = x j for each j �= i and xi+
i = (xi + 1) mod k, and we set (x)i− =

xi−
n−1xi−

n−2 · · · xi−
0 being the neighbor of x in dimension i of Q k

n , where xi−
j = x j for every j �= i and xi−

i = (xi − 1) mod k. For 
clarity of presentation, the remaining expressions in this paper omit writing “mod k”. Note that each node has degree 2n
when k ≥ 3 and n ≥ 1, and Q k

1 is isomorphic to a cycle of length k.

3. κ( Q k
n ; Pl) and κ s( Q k

n ; Pl)

As the k-ary n-cube Q k
n is a special class of n-demensional torus networks, we have the following two lemmas from [4].

Lemma 3.1 ([4]). If k �= 3, then Q k
n is triangle free.

Lemma 3.2 ([4]). The k-ary n-cube Q k
n does not contain the complete bipartite graph K2,3.

Lemma 3.3. Let Pl be a path in Q k
n(k ≥ 4) with 1 ≤ l ≤ 2n. If v is a node of Q k

n − Pl, then |N Q k
n
(v) ∩ V (Pl)| ≤ 
l/2�.

Proof. Q k
n is triangle free by Lemma 3.1, v can be adjacent to at most one node of any two consecutive nodes on Pl . Thus, 

the lemma follows. �
Lemma 3.4. Any two nodes in Q k

n have at most two common neighbours if they have any.

Proof. Let u and v be two nodes in Q k
n . Suppose that they have at least three common neighbours, then this gives a K2,3

in Q k
n , which is a contradiction by Lemma 3.2. Thus, the result holds. �

Lemma 3.5. Let Pl be a path in Q k
n(k ≥ 4) with 3 ≤ l ≤ 2n. If u and v are two adjacent nodes of Q k

n − Pl, then |N Q k
n
({u, v}) ∩ V (Pl)| ≤

l − 1.
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Fig. 1. A Pl -structure-cut of Q k
n .

Proof. Clearly, |N Q k
n
({u, v}) ∩ V (Pl)| ≤ l. So it suffices to show that there exists at least one node on Pl , which is adjacent 

to neither u nor v . In deed, since Q k
n is triangle free and by Lemma 3.4, at least one node of any three consecutive nodes 

on Pl is adjacent to neither u or v . It implies that |N Q k
n
({u, v}) ∩ V (Pl)| ≤ l − 1. �

Lemma 3.6 ([6,7]). κ(Q k
n) = 2n for k ≥ 3 and n ≥ 1; κ1(Q k

n ) = 4n − 2 for k ≥ 4 and n ≥ 2.

Lemma 3.7 ([10]). If k ≥ 4 and n ≥ 5, then κ2(Q k
n ) = 6n − 5.

Since Q k
n is node-symmetric, we set u being an arbitrary node in Q k

n . Note that there are 2n neighbors of u. A pair of 
neighbors ui+ (or ui−) and u j+ (or u j−) have a common neighbor ui+ j+ (or ui+ j− , ui− j+ , ui− j−) other than u if i �= j. 
Moreover, the common neighbors are all distinct. So, for any set X of 
 l

2 � neighbors of u, there exists a path(or cycle) of 
order l that passes through all the neighbors in X . Thus, we would construct a Pl−(or Cl−)structure-cut of Q k

n based on 
the idea in Lemma 3.8 and Lemma 4.1.

Lemma 3.8. Let 3 ≤ l ≤ 2n. Then κ(Q k
n ; Pl) ≤ 
 4n

l+1 � and κ s(Q k
n ; Pl) ≤ 
 4n

l+1 � if l is odd; κ(Q k
n ; Pl) ≤ 
 4n

l � and κ s(Q k
n ; Pl) ≤ 
 4n

l � if 
l is even.

Proof. In the following we distinguish cases pertaining to the parity of l.
Case 1. l is odd. Without loss of generality, we assume that l ≡ 3(mod4). Let 2n = q · ( l+1

2 ) + r for some nonnegative 
integers q and r with 0 ≤ r ≤ l−1

2 (note that r is even). Since 2n ≥ l, we have q ≥ 1. Let u be an arbitrary node in Q k
n .

Case 1.1. r = 0. We set
P 1 = 〈(u)1−

, ((u)1−
)0+

, (u)0+
, ((u)0+

)2−
, (u)2−

, · · · , (u)(
l+1

4 −1)− , ((u)(
l+1

4 −1)− )(
l+1

4 −2)+ , (u)(
l+1

4 −2)+ , ((u)(
l+1

4 −2)+ )(
l+1

4 )− , 
(u)(

l+1
4 )− , ((u)(

l+1
4 )− )(

l+1
4 −1)+ , (u)(

l+1
4 −1)+〉,

P 2 = 〈(u)(
l+1

4 +1)− , ((u)(
l+1

4 +1)− )(
l+1

4 )+ , (u)(
l+1

4 )+ , · · · , (u)(
l+1

2 )− , ((u)(
l+1

2 )− )(
l+1

2 −1)+ , (u)(
l+1

2 −1)+〉,
· · ·
P q = 〈(u)(n− l+1

4 +1)− , ((u)(n− l+1
4 +1)− )(n− l+1

4 )+ , (u)(n− l+1
4 )+ , · · · , (u)0−

, ((u)0−
)(n−1)+ , (u)(n−1)+〉.

Clearly, P i(1 ≤ i ≤ q) is a path of order l = 4( l+1
4 − 1) + 3, which contains l+1

2 neighbors of u. Thus F = {P 1, P 2, · · · , P q}
forms a Pl−structure-cut of Q k

n and |F | = 4n
l+1 . (See Fig. 1.)

Case 1.2. 2 ≤ r ≤ l−3
2 . We set

P 1 = 〈(u)1−
, ((u)1−

)0+
, (u)0+

, ((u)0+
)2−

, (u)2−
, · · · , (u)(

l+1
4 −1)− , ((u)(

l+1
4 −1)− )(

l+1
4 −2)+ , (u)(

l+1
4 −2)+ , ((u)(

l+1
4 −2)+ )(

l+1
4 )− , 

(u)(
l+1

4 )− , ((u)(
l+1

4 )− )(
l+1

4 −1)+ , (u)(
l+1

4 −1)+〉,

P 2 = 〈(u)(
l+1

4 +1)− , ((u)(
l+1

4 +1)− )(
l+1

4 )+ , (u)(
l+1

4 )+ , · · · , (u)(
l+1

2 )− , ((u)(
l+1

2 )− )(
l+1

2 −1)+ , (u)(
l+1

2 −1)+〉,
· · ·
P q = 〈(u)(n− r

2 − l+1
4 +1)− , ((u)(n− r

2 − l+1
4 +1)− )(n− r

2 − l+1
4 )+ , (u)(n− r

2 − l+1
4 )+ , · · · , (u)(n− r

2 )− , ((u)(n− r
2 )− )(n− r

2 −1)+ , (u)(n− r
2 −1)+〉,

P (q+1) = 〈(u)(n− r
2 +1)− , ((u)(n− r

2 +1)− )(n− r
2 )+ , (u)(n− r

2 )+ , · · · , (u)0−
, ((u)0−

)(n−1)+ , (u)(n−1)+ , ((u)(n−1)+ )1−
,

(((u)(n−1)+ )1−
)2+

, · · · , ((((u)(n−1)+ )1−
)2+···)(l+1−2r(modn))+〉.

Then F = {P 1, P 2, · · · , P q, P (q+1)} forms a Pl−structure-cut of Q k
n and |F | = 
 4n

l+1 �. When l ≡ 1(mod4), one can similarly 
obtain the result.
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Thus, κ(Q k
n ; Pl) ≤ 
 4n

l+1 � and consequently κ s(Q k
n ; Pl) ≤ 
 4n

l+1 � when l is odd.

Case 2. l is even. Without loss of generality, we assume that l ≡ 0(mod4). Let 2n = q · ( l
2 ) + r for some nonnegative 

integers q and r with 0 ≤ r ≤ l−2
2 (r is even). Since 2n ≥ l, we have q ≥ 1. We set u being an arbitrary node in Q k

n .
Case 1.1. r = 0. We set
P 1 = 〈(u)1−

, ((u)1−
)0+

, (u)0+
, ((u)0+

)2−
, · · · , (u)(

l
4 )− , ((u)(

l
4 )− )(

l
4 −1)+ , (u)(

l
4 −1)+ , ((u)(

l
4 −1)+ )(

l
4 +1)−〉,

P 2 = 〈(u)(
l
4 +1)− , ((u)(

l
4 +1)− )(

l
4 )+ , (u)(

l
4 )+ , · · · , (u)(

l
2 )− , ((u)(

l
2 )− )(

l
2 −1)+ , (u)(

l
2 −1)+ , ((u)(

l
2 −1)+ )(

l
2 +1)−〉,

· · ·
P q = 〈(u)(n− l

4 +1)− , ((u)(n− l
4 +1)− )(n− l

4 )+ , (u)(n− l
4 )+ , · · · , (u)0−

, ((u)0−
)(n−1)+ , (u)(n−1)+ , ((u)(n−1)+ )1−〉.

Clearly, P i(1 ≤ i ≤ q) is a path of order l = 4 · l
4 , which contains l

2 neighbors of u. Then F = {P 1, P 2, · · · , P q} forms a 
Pl−structure-cut of Q k

n and |F | = 4n
l .

Case 1.2. 2 ≤ r ≤ l−4
2 . We set

P 1 = 〈(u)1−
, ((u)1−

)0+
, (u)0+

, ((u)0+
)2−

, · · · , (u)(
l
4 )− , ((u)(

l
4 )− )(

l
4 −1)+ , (u)(

l
4 −1)+ , ((u)(

l
4 −1)+ )(

l
4 +1)−〉,

P 2 = 〈(u)(
l
4 +1)− , ((u)(

l
4 +1)− )(

l
4 )+ , (u)(

l
4 )+ , · · · , (u)(

l
2 )− , ((u)(

l
2 )− )(

l
2 −1)+ , (u)(

l
2 −1)+ , ((u)(

l
2 −1)+ )(

l
2 +1)−〉,

· · ·
P q = 〈(u)(n− r

2 − l
4 +1)− , ((u)(n− r

2 − l
4 +1)− )(n− r

2 − l
4 )+ , (u)(n− r

2 − l
4 )+ , · · · , (u)(n− r

2 )− , ((u)(n− r
2 )− )(n− r

2 −1)+ , (u)(n− r
2 −1)+ ,

((u)(n− r
2 −1)+ )(n− r

2 +1)−〉,
P (q+1) = 〈(u)(n− r

2 +1)− , ((u)(n− r
2 +1)− )(n− r

2 )+ , (u)(n− r
2 )+ , · · · , (u)0−

, ((u)0−
)(n−1)+ , (u)(n−1)+ , ((u)(n−1)+ )1−

,
(((u)(n−1)+ )1−

)2+
, · · · , ((((u)(n−1)+ )1−

)2+···)(l+1−2r(modn))−〉.
Then F = {P 1, P 2, · · · , P q, P (q+1)} forms a Pl−structure-cut of Q k

n and |F | = 
 4n
l �. When l ≡ 2(mod4), one can similarly 

obtain the result.
Thus, κ(Q k

n ; Pl) ≤ 
 4n
l � and consequently κ s(Q k

n ; Pl) ≤ 
 4n
l � when l is even. �

Lemma 3.9. Let 3 ≤ l ≤ 2n, k ≥ 4 and n ≥ 5. Then κ(Q k
n ; Pl) ≥ 
 4n

l+1 � and κ s(Q k
n ; Pl) ≥ 
 4n

l+1 � if l is odd; κ(Q k
n ; Pl) ≥ 
 4n

l � and 
κ s(Q k

n ; Pl) ≥ 
 4n
l � if l is even.

Proof. If no confusion should arise, we use F = {P1, · · · , P1︸ ︷︷ ︸
λ1

, P2, · · · , P2︸ ︷︷ ︸
λ2

, · · · , Pl, · · · , Pl︸ ︷︷ ︸
λl

} to denote a set of connected sub-

graphs of Pl with |F | = ∑l
i=1 λi for λi ≥ 0. We prove this by contradiction.

Case 1. When l is odd, let |F | ≤ 
 4n
l+1 � − 1. Suppose to the contrary that Q k

n − F is disconnected, then Q k
n − F has at least 

two components. Without loss of generality, let C be a smallest component of Q k
n − F . We consider the following three 

events.
Case 1.1. |V (C)| = 1. We set V (C) = {u}, then |N Q k

n
(u)| = 2n. By Lemma 3.3, every element in F contains at most l+1

2

neighbours of u. Thus, we have to delete at least 
 2n
l+1

2
� = 
 4n

l+1 � elements of F to isolate C . But it is impossible since 

|F | ≤ 
 4n
l+1 � − 1 < 
 4n

l+1 �.

Case 1.2. |V (C)| ≥ 2. By Lemma 3.6, κ1(Q k
n ) = 4n − 2. This implies that we have to delete at least 4n − 2 nodes to isolate 

C . However, from the assumption |F | ≤ 
 4n
l+1 � − 1, we infer that |V (F )| ≤ l(
 4n

l+1 � − 1) ≤ l( 4n+l−1
l+1 − 1) = l

l+1 (4n − 2) < 4n − 2, 
a contradiction.

Case 2. l is even. Let |F | ≤ 
 4n
l � − 1. With similar argument as that in the proof of Case 1, we consider the following 

three events.
Case 2.1. |V (C)| = 1. We set V (C) = {u}, then |N Q k

n
(u)| = 2n. By Lemma 3.3, every element in F contains at most 

l
2 neighbours of u. Thus, we have to delete at least 
 2n

l
2

� = 
 4n
l � elements of F to isolate C . But it is impossible since 

|F | ≤ 
 4n
l � − 1 < 
 4n

l �.
Case 2.2. |V (C)| = 2. Suppose that V (C) = {{u, v}|(u, v) ∈ E(Q k

n )}, then |N Q k
n
(u, v)| = 4n − 2. By Lemma 3.5, every ele-

ment in F contains at most l − 1 neighbours of {u, v}. It means that we have to delete at least 
 4n−2
l−1 � elements of F to 

isolate C . Then, |F | ≤ 
 4n
l � − 1 ≤ 4n+l−2

l − 1 = 4n−2
l < 4n−2

l−1 ≤ 
 4n−2
l−1 �, a contradiction.

Case 2.3. |V (C)| ≥ 3. By Lemma 3.7, κ2(Q k
n ) = 6n −5 when k ≥ 4 and n ≥ 5. Thus, we have to delete at least 6n −5 nodes 

to isolate C . However, by the assumption |F | ≤ 
 4n
l � − 1. We have |V (F )| ≤ l(
 4n

l � − 1) ≤ l( 4n+l−2
l − 1) = 4n − 2 < 6n − 5 for 

n ≥ 5, a contradiction. �
Combining Lemma 3.8 and Lemma 3.9, we have the following theorem.

Theorem 3.10. Let 3 ≤ l ≤ 2n, k ≥ 4 and n ≥ 5. Then κ(Q k
n ; Pl) = 
 4n

l+1 � and κ s(Q k
n ; Pl) = 
 4n

l+1 � if l is odd; κ(Q k
n ; Pl) = 
 4n

l � and 
κ s(Q k

n ; Pl) = 
 4n
l � if l is even.
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4. κ( Q k
n ; Cl) and κ s( Q k

n ; Cl)

Note that the k-ary n-cube Q k
n is bipartite if k is even, thus it contains no odd cycles. In the following, we consider 

κ(Q k
n ; Cl) and κ s(Q k

n ; Cl) when l is even.

Lemma 4.1. Let 6 ≤ l ≤ 2n. Then κ(Q k
n ; Cl) ≤ 
 4n

l � and κ s(Q k
n ; Cl) ≤ 
 4n

l � if l is even.

Proof. Without loss of generality, we assume that l ≡ 0(mod4). Let 2n = q · ( l
2 ) + r for some nonnegative integers q and r

with 0 ≤ r ≤ l−2
2 . Since 2n ≥ l, we have q ≥ 1. We set u being an arbitrary node in Q k

n .
Case 1.1. r = 0. If l = 8. We set
C1 = 〈(u)1−

, ((u)1−
)0+

, (u)0+
, ((u)0+

)2−
, (u)2−

, ((u)2−
)0−

, (u)0−
, ((u)0−

)1−
, (u)1−〉,

C2 = 〈(u)3−
, ((u)3−

)2+
, (u)2+

, MATH, (u)4−
, ((u)4−

)1+
, (u)1+

, ((u)1+
)3−

, (u)3−〉,
· · ·
C

n
2 = 〈(u)(n−1)− , ((u)(n−1)− )(n−2)+ , (u)(n−2)+ , ((u)(n−2)+ )(n−1)+ , (u)(n−1)+ , ((u)(n−1)+ )(n−3)+ , (u)(n−3)+ ,

((u)(n−3)+ )(n−1)− , (u)(n−1)−〉.
Then, C i(1 ≤ i ≤ n

2 ) is a cycle of order l = 8, which contains 4 neighbors of u. Then F = {C1, C2, · · · , C
n
2 } forms a 

Cl−structure-cut of Q k
n and |F | = 4n

l = n
2 .

Otherwise, we set
C1 = 〈(u)1−

, ((u)1−
)0+

, (u)0+
, ((u)0+

)2−
, · · · , (u)(

l
4 )− , ((u)(

l
4 )− )(

l
4 −1)+ , (u)(

l
4 −1)+ , ((u)(

l
4 −1)+ )1−

, (u)1−〉,

C2 = 〈(u)(
l
4 +1)− , ((u)(

l
4 +1)− )(

l
4 )+ , (u)(

l
4 )+ , · · · , (u)(

l
2 )− , ((u)(

l
2 )− )(

l
2 −1)+ , (u)(

l
2 −1)+ , ((u)(

l
2 −1)+ )(

l
4 +1)− , (u)(

l
4 +1)−〉,

· · ·
Cq = 〈(u)(n− l

4 +1)− , ((u)(n− l
4 +1)− )(n− l

4 )+ , · · · , (u)0−
, ((u)0−

)(n−1)+ , (u)(n−1)+ , ((u)(n−1)+ )(n− l
4 +1)− , (u)(n− l

4 +1)−〉.
Obviously, C i(1 ≤ i ≤ q) is a cycle of order l = 4 · l

4 , which contains l
2 neighbors of u. Then F = {C1, C2, · · · , Cq} forms a 

Cl−structure-cut of Q k
n and |F | = 4n

l .

Case 1.2. 2 ≤ r ≤ l−4
2 . If l = 8, then r = 2 and we set

C1 = 〈(u)1−
, ((u)1−

)0+
, (u)0+

, ((u)0+
)2−

, (u)2−
, ((u)2−

)0−
, (u)0−

, ((u)0−
)1−

, (u)1−〉,
C2 = 〈(u)3−

, ((u)3−
)2+

, (u)2+
, MATH, (u)4−

, ((u)4−
)1+

, (u)1+
, ((u)1+

)3−
, (u)3−〉,

· · ·
C

n−1
2 = 〈(u)(n−2)− , ((u)(n−2)− )(n−3)+ , (u)(n−3)+ , ((u)(n−3)+ )(n−1)− , (u)(n−1)− , ((u)(n−1)− )(n−4)+ , (u)(n−4)+ , ((u)(n−4)+ )(n−2)− ,

(u)(n−2)−〉,
C

n+1
2 = 〈(u)(n−2)+ , ((u)(n−2)+ )(n−1)+ , (u)(n−1)+ , ((u)(n−1)+ )(n−3)− , (((u)(n−1)+ )(n−3)− )(n−2)+ , ((u)(n−3)− )(n−2)+ ,

(((u)(n−3)− )(n−2)+ )(n−1)− , ((u)(n−2)+ )(n−1)− , (u)(n−2)+〉.
Now F = {C1, C2, · · · , C

n+1
2 } forms a Cl−structure-cut of Q k

n and |F | = 
 n
2 � = 
 4n

l �.
Otherwise, we set
C1 = 〈(u)1−

, ((u)1−
)0+

, (u)0+
, ((u)0+

)2−
, · · · , (u)(

l
4 )− , ((u)(

l
4 )− )(

l
4 −1)+ , (u)(

l
4 −1)+ , ((u)(

l
4 −1)+ )1−

, (u)1−〉,

C2 = 〈(u)(
l
4 +1)− , ((u)(

l
4 +1)− )(

l
4 )+ , (u)(

l
4 )+ , · · · , (u)(

l
2 )− , ((u)(

l
2 )− )(

l
2 −1)+ , (u)(

l
2 −1)+ , ((u)(

l
2 −1)+ )(

l
4 +1)− , (u)(

l
4 +1)−〉,

· · ·
Cq = 〈(u)(n− r

2 − l
4 +1)− , ((u)(n− r

2 − l
4 +1)− )(n− r

2 − l
4 )+ , (u)(n− r

2 − l
4 )+ , · · · , (u)(n− r

2 )− , ((u)(n− r
2 )− )(n− r

2 −1)+ , (u)(n− r
2 −1)+ ,

((u)(n− r
2 −1)+ )(n− r

2 − l
4 +1)− , (u)(n− r

2 − l
4 +1)−〉,

C (q+1) = 〈(u)(n− r
2 +1)− , ((u)(n− r

2 +1)− )(n− r
2 )+ , (u)(n− r

2 )+ , · · · , (u)0−
, ((u)0−

)(n−1)+ , (u)(n−1)+ , P ,

(((((u)(n−1)+ )1−
)2+···)( l

2 −r)+ )(n− r
2 +1)− , Q −1〉,

where P = 〈((u)(n−1)+ )1−
, (((u)(n−1)+ )1−

)2+
, · · · , ((((u)(n−1)+ )1−

)2+···)( l
2 −r)+〉, Q = 〈(u)(n− r

2 +1)− , ((u)(n− r
2 +1)− )1−

, · · · , 
((((u)(n− r

2 +1)− )1−
)2+···)( l

2 −r)+〉.
Then F = {C1, C2, · · · , Cq, C (q+1)} forms a Cl−structure-cut of Q k

n and |F | = 
 4n
l �.

Thus, κ(Q k
n ; Cl) ≤ 
 4n

l � and consequently κ s(Q k
n ; Cl) ≤ 
 4n

l � when l is even. �
Lemma 4.2. Let 6 ≤ l ≤ 2n, k ≥ 4 and n ≥ 5. Then κ(Q k

n ; Cl) ≥ 
 4n
l � and κ s(Q k

n ; Cl) ≥ 
 4n
l � if l is even.

Proof. Let F = {P1, · · · , P1︸ ︷︷ ︸
λ1

, P2, · · · , P2︸ ︷︷ ︸
λ2

, · · · , Pl, · · · , Pl︸ ︷︷ ︸
λl

, Cl, · · · , Cl︸ ︷︷ ︸
μ

} and |F | = ∑l
i=1 λi + μ ≤ 
 4n

l � − 1 for λi ≥ 0, μ ≥ 0. Sup-

pose to the contrary that Q k
n − F is disconnected, then Q k

n − F has at least two components. Without loss of generality, let 
C be a smallest component of Q k

n − F . The result can be proved by considering the similar three events as Lemma 3.9. �
By Lemma 4.1 and Lemma 4.2, we have the following theorem.

Theorem 4.3. Let 6 ≤ l ≤ 2n, k ≥ 4 and n ≥ 5. Then κ(Q k
n ; Cl) = 
 4n � and κ s(Q k

n ; Cl) = 
 4n � if l is even.
l l
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Note that it’s an open problem to analyze the (sub)structure connectivity of the k-ary n-cube for k = 3. One could 
attempt to modify the techniques used here to complete it.
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