
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023 13015

Temporal Graph Cube
Guoren Wang , Yue Zeng , Rong-Hua Li , Hongchao Qin , Xuanhua Shi , Senior Member, IEEE,

Yubin Xia , Xuequn Shang , and Liang Hong

Abstract—Data warehouse and OLAP (Online Analytical Pro-
cessing) are effective tools for decision support on traditional
relational data and static multidimensional network data. How-
ever, many real-world multidimensional networks are often mod-
eled as temporal multidimensional networks, where the edges
in the network are associated with temporal information. Such
temporal multidimensional networks typically cannot be han-
dled by traditional data warehouse and OLAP techniques. To
fill this gap, we propose a novel data warehouse model, named
Temporal Graph Cube, to support OLAP queries on temporal
multidimensional networks. Through supporting OLAP queries
in any time range, users can obtain summarized information of
the network in the time range of interest, which cannot be derived
by using traditional static graph OLAP techniques. We propose
a segment-tree based indexing technique to speed up the OLAP
queries, and also develop an index-updating technique to maintain
the index when the temporal multidimensional network evolves
over time. In addition, we also propose a novel concept called
similarity of snapshots which shows a strong correlation with the
efficiency of indexing technique and can provide a good reference
on the necessity of building the index. The results of extensive
experiments on two large real-world datasets demonstrate the
effectiveness and efficiency of the proposed method.

Index Terms—Data warehouse, OLAP, temporal
multidimensional network, temporal graph cube, segment tree.

I. INTRODUCTION

DATA warehouses and OLAP (Online Analytical Process-
ing) techniques are helpful tools for knowledge workers

(executive, manager, analyst) to analyze and make decisions, be-
cause Data warehouses and OLAP together can efficiently pro-
vide summarized information in different resolutions by specify-
ing different views (different combinations of data dimensions)

Manuscript received 15 June 2022; revised 31 January 2023; accepted 8 April
2023. Date of publication 26 April 2023; date of current version 8 November
2023. This work was supported in part by the National Key Research and
Development Program of China under Grant 2020AAA0108500, in part by
the Key R&D Program of Hubei under Grant 2020BAA020, in part by NSFC
under Grants U2241211, 62072034, U1809206, and 72074172, and in part by
CCF-Huawei Populus Grove Fund. Recommended for acceptance by Y. Tong.
(Corresponding author: Guoren Wang.)

Guoren Wang, Yue Zeng, Rong-Hua Li, and Hongchao Qin are with the
Beijing Institute of Technology, Beijing 100811, China (e-mail: wanggrbit@
126.com; bruceez@163.com; lironghuabit@126.com; qhc.neu@gmail.com).

Xuanhua Shi is with the Huazhong University of Science and Technology,
Wuhan, Hubei 430074, China (e-mail: xhshi@hust.edu.cn).

Yubin Xia is with the Shanghai Jiao Tong University, Shanghai 200240, China
(e-mail: xiayubin@sjtu.edu.cn).

Xuequn Shang is with the Northwestern Polytechnical University, Xi’an,
Shaanxi 710072, China (e-mail: shang@nwpu.edu.cn).

Liang Hong is with the Wuhan University, Wuhan, Hubei 430072, China
(e-mail: hong@whu.edu.cn).

Digital Object Identifier 10.1109/TKDE.2023.3270460

of large-scale real-world data through OLAP operations such
as roll-up, drill-down and slice-and-dice [1]. Data warehouse
built on traditional relational database (RDB) data is called data
cube [2]. In 2011, Zhao et al. [3] proposed Graph Cube which
extends data warehouses and OLAP techniques to analyze static
multidimensional networks. For each query, static graph cube
returns a static network with summarized information in its
structure and statistical values on vertices and edges.

However, many real-life networks, such as human proximity
networks, scientific collaboration networks, and biological net-
works, can be modeled as temporal networks [4], where each
relationship or interaction has a timestamp. Also, vertices in
temporal networks usually contain attributes of multiple dimen-
sions. For example, vertices in human proximity networks have
attributes such as name, gender, nationality, hobbies, and so
on. Such an attributed network can be modeled as a temporal
multidimensional network. There are many studies focusing on
the management and analysis of temporal networks [5], but
none of them have tried to extend OLAP techniques to tem-
poral multidimensional networks, i.e., developing approaches
to provide users in real time with summarized information on
the temporal multidimensional networks in different resolutions
and time ranges.

Example 1: Fig. 1 shows a sample temporal transaction
network, presenting the transactions between individuals of
different countries of birth and professions in each day. Table in
Fig. 1(a) is the vertex table of the temporal network, showing the
information of the 8 individuals. Each individual has a primary
key ID and 3 dimensions (3 discrete attributes): gender, country
(country of birth), profession. Income is a numeric attribute
of individuals. Fig. 1(b) shows the network structure of the
temporal network. There are 20 temporal edges, illustrating the
transactions between individuals in 5 days. Temporal edges in
each day can be organized into a snapshot. The numeric attribute
on each temporal edge is the amount of each transaction. The
static multidimensional information of individuals in Fig. 1(a)
and the temporal information of network structure in Fig. 1(b)
form a temporal multidimensional network.

In static graph cube [3], users can specify different views to
obtain summarized information of the static multidimensional
network and combine the information under these views through
OLAP operations such as roll-up, drill-down and slice-and-dice
interactively for decision support and business intelligence. For
example, a company tries to use static graph cube to analyze
the interaction characteristics of people with different attributes
(name, gender, profession, income level, etc.) in a large-scale
social network in order to support their marketing strategy

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0181-8379
https://orcid.org/0009-0002-4503-0361
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0001-8451-8656
https://orcid.org/0000-0001-6558-5298
https://orcid.org/0000-0002-7249-8210
https://orcid.org/0000-0002-1466-9843
mailto:wanggrbit@126.com
mailto:wanggrbit@126.com
mailto:bruceez@163.com
mailto:lironghuabit@126.com
mailto:qhc.neu@gmail.com
mailto:xhshi@hust.edu.cn
mailto:xiayubin@sjtu.edu.cn
mailto:shang@nwpu.edu.cn
mailto:hong@whu.edu.cn

13016 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Fig. 1. Running example: a temporal multidimensional network with its vertex table and network structure.

making. However, edges in real-world networks usually contain
timestamps. For example, in social networks, interactions be-
tween people occur at specific times, such as a particular day. In
this way, static graph cube does not work when users only need
information for a specific time range. Considering the previous
example, the company only needs data from the last few years,
because data that is too old is less informative. Or, they want to
study what the characteristics of people’s interactions are during
particular time ranges, such as holidays or COVID-19 periods.
Or, they wish to compare several different time ranges to see
how people’s interaction patterns change over time. Static graph
cube cannot meet the above requirements. As a result, we need to
propose novel approaches to make data warehouses and OLAP
capable of analyzing temporal multidimensional networks.

In this paper, we propose a new data warehouse model, called
Temporal Graph Cube; and we extend the definition of OLAP
queries by specifying a time range so that they can be applied to
Temporal Graph Cube. Users can explore summarized informa-
tion on different views of temporal multidimensional networks
in any time range usingTemporal Graph Cube. The challenge of
our problem is: how to efficiently merge snapshots in a specific
time range for each online OLAP query. A basic approach is
to merge snapshots in the time range one by one. Such a basic
method, however, is clearly inefficient when the time ranges are
very large or a large number of OLAP queries come. The above
problem can be seen as range query on snapshot arrays. Unfor-
tunately, among the existing works for summarizing temporal
networks [6], there is no work which focuses on summarizing
snapshots within a certain time range online. In this paper, we
investigate the problem of how to speed up merging snapshots in
certain time ranges. Our solution is to build an index on snapshot
arrays to reduce the query processing time. Specifically, we
propose a segment-tree based index to support the range query on
snapshot arrays. Since new edges are constantly inserted into the
temporal multidimensional network, we also propose an index
updating technique to handle such an edge-insertion case. In
addition, similar to the static graph cube, the implementation
of the Temporal Graph Cube also requires determining the
materialization strategy of views in order to achieve a balance
between time and space. To this end, we adopt a strategy called
MinLevel proposed in [3] to handle the materialization problem
in Temporal Graph Cube, as it fits our model best.

To summarize, the main contributions of this work are as
follows:

1) We propose a new data warehouse modelTemporal Graph
Cube, which supports decision making on the basis of
temporal multidimensional networks. The key difference
compared to static graph cube is that Temporal Graph
Cube supports querying summarized information for any
time range of temporal multidimensional networks so that
it supports more diverse analysis.

2) We extend the classic segment tree that tailored for tradi-
tional range query problems to our range query problems
on snapshot arrays to reduce the OLAP query processing
time. We also develop an index maintainable technique to
handle the case when new edges are added to the temporal
networks.

3) We propose a new metric, called similarity of snapshots,
to measure the overall similarity of snapshots in a snapshot
array, or, the degree to which the edges are shared by
different snapshots. We show that this metric has a strong
correlation with the effectiveness of the indexes and it can
guide us to decide whether an index should be built.

4) We conduct extensive experiments on two large-scale real-
world datasets. The results demonstrate the effectiveness
and efficiency of the Temporal Graph Cube. The results
also confirm the correlation between the efficiency (time
and space) of the index and similarity of snapshots.

II. TEMPORAL GRAPH CUBE

Definition 1 (Temporal Multidimensional Network): Let G =
(V, E , A,W) be an undirected temporal multidimensional net-
work where V and E are the set of nodes and edges respectively.
Edges in E are in the form of (u, v, t, a). u and v are nodes
in V . t and a are timestamp and numeric attribute respectively
attached to edges. A = {A1, A2, . . ., An} represents the dimen-
sions of the network or n discrete attributes of nodes in V , i.e.,
A(u) = {A1(u), A2(u), . . ., An(u)} where Ai(u) is the actual
value of u on the ith attribute. W (u) is the numeric value of u.

For convenience, we abbreviate temporal multidimensional
network and static multidimensional network to temp-multi-
network and static-multi-network respectively. Since we only
consider undirected edges in this paper, if not specified,
we assume without loss of generality u ≤ v for (u, v, t, a)
in all following definitions. As shown in Fig. 1, A =
{Gender, Country, Profession} and W = Income. We do
not consider ID to be an attribute of individuals because ID

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TEMPORAL GRAPH CUBE 13017

Fig. 2. Snapshots of the first temporal aggregate network in Example 2.

is only the identification of individuals. V is the set of IDs of
individuals in Fig. 1(a) and E is the set of temporal edges in
Fig. 1(b). A temp-multi-network can also be represented by a
sequence of snapshots.

Definition 2 (Snapshot): Let T = {t|(u, v, t, a) ∈ E} be the
set of timestamps. For each ti ∈ T , we can obtain a snapshot
Si = {(u, v, a)|(u, v, ti, a) ∈ E}.

For example, in Fig. 1(b), we can extract 5 snap-
shots; and the snapshot at timestamp 1 is S1 = {(v1, v2,
10), (v2, v3, 20), (v3, v4, 10), (v1, v4, 15)}. With the definition
of snapshot, we can define temp-multi-network in Definition 1
as G = (V,S, A,W) where S = {S1, S2, . . ., S|T |} and Si is
the snapshot at ti.

Biased Timestamp: To store snapshots in a snapshot array
and access snapshots directly by corresponding timestamps, we
replace the original timestamps of snapshots with biased times-
tamps. For each temp-multi-network, suppose t1 is the smallest
timestamp, t|T | is the biggest timestamp and tbase = t1 − 1,
biased timestamp of snapshot Si is computed by ti − tbase.
Through biased timestamp we can map timestamps in [t1, t|T |]
to [1, tend], where tend = t|T | − tbase. The above strategy is
useful when timestamps in temp-multi-network are dense. If
timestamps are sparse, i.e., |T | � t|T | − t1, there will be many
empty snapshots in snapshot array. We can sacrifice a little in
efficiency, hashing all the timestamps into a denser space and
relocating time range [l, r] of each query (we will discuss queries
in Section III) to the actual time range. However, in large scale
real-world temp-multi-networks, temporal relations can be built
at almost all time, so the timestamps are unlikely to be sparse,
which is confirmed in our datasets. All algorithms in this paper
are designed based on the definition of temp-multi-network
G = (V,S, A,W), where S is a snapshot array with biased
timestamps of snapshots start from 1.

Definition 3 (Temporal Aggregate Network): Given a tem-
poral multidimensional network G = (V,S, A,W) and an ag-
gregation A′ = (A′

1, A
′
2, . . ., A

′
n) where A′

i equals Ai or ∗,
the obtained temporal aggregate network is another temporal
multidimensional networkG′ = (V′,S′, B,WG′)whereV′ ⊆ V ,
B = {A′

i|A′
i �= ∗} and

1) Let [v] be an equivalence class of v, where v ∈ V and
[v] = {u|B(u) = B(v), u ∈ V}. For each v ∈ V , ∃v′ ∈
V′ satisfying v′ ∈ [v] and�u′ ∈ V′, u′ �= v′ satisfyingu′ ∈
[v]. WG′(v′) is the aggregation result of W (v) for v ∈ [v′]
obtained by aggregation function upon vertices specified
by user.

2) ∀u′, v′ ∈ V′ where u′ ≤ v′ and any S[i] for i ∈ [1, tend],
if there exists a nonempty maximum edge set E =
{(u, v, a)|(u, v, a) ∈ S[i], (u ∈ [u′] ∧ v ∈ [v′]) ∨ (u ∈
[v′] ∧ v ∈ [u′])}, then ∃(u′, v′, a′) ∈ S′[i] where a′ is the
aggregation result of numeric attributes of edges in E

Fig. 3. Snapshots of the second temporal aggregate network in Example 2.
v1 = “male, teacher”, v2 = “male, shopowner”, v3 = “male, student”, v4 =
“female, shopowner”, v5 = “female, lawyer”, v6 = “female, doctor”.

obtained by aggregation function upon edges specified by
user.

In short, conducting aggregations on temp-multi-network
contains two stages: aggregating, or group-by on the vertex
table as 1) in Definition 3 and aggregating each snapshots in
the temp-multi-network as 2) in Definition 3.

Example 2: Fig. 2 shows the snapshots of a temporal ag-
gregate network, which is obtained by aggregating temp-multi-
network in Fig. 1 on dimension “Gender”. The obtained tem-
poral aggregate network is also a temp-multi-network. There
are 5 snapshots in Fig. 2, each of them is corresponding to
the snapshot with the same timestamp in Fig. 1(b). For each
snapshot in Fig. 2, each edge e′ is the aggregated edge of a
set of edges E in the corresponding snapshot. Each edge in
E have two vertices aggregated to the two vertices of e′, as
2) in Definition 3. In this example, the attribute in e′ is the
amount of the attributes of edges in E, i.e., the total transactions
between individuals of two genders in each day. We can also
choose other aggregation functions for edges like COUNT(∗),
MAX(∗), and so on. Similarly, Fig. 3 shows another temporal
aggregate network by aggregating temp-multi-network in Fig. 1
on dimension “Gender” and “Profession”.

Obviously, the temporal aggregate network is not the direct
answer of OLAP query on temp-multi-network, because tem-
poral aggregate network contains aggregated snapshot at each
timestamp, but OLAP query on temp-multi-network requires a
summarized snapshot of a specified time range. However, tem-
poral aggregate network can provide a cheaper way to conduct
queries compared to conducting queries directly on the original
temp-multi-network. We will explain in detail in Section III.

We devise a basic algorithm, as outlined in Algorithm 1, to
construct the temporal aggregate network with aggregation A′

from the original network G. Note that there are two things to
be concerned about aggregation functions:
� We assume fv and fe are not AVERAGE(∗), since

the result of AVERAGE(∗) can be easily computed by
SUM(∗)/COUNT(∗).

� If fv = COUNT(∗), we assign 1 to all W (u), u ∈ V , be-
cause 1 is the correct attribute value of each vertex when
counting is needed. The same assignment should be done
to numeric attributes of all edges if fe = COUNT(∗).

Algorithm 1 first conducts the specified aggregation on all
vertices of the original network. In line 1, we first create a
hash structure, h, to maintain a mapping from all possible
B(u), u ∈ V to vertices of the temporal aggregate network. In
lines 2–6, we group all vertices in V with the specified aggrega-
tion A′ and compute the aggregation result of numeric attributes

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

13018 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Algorithm 1: TemporalAggregateNetworkConstruction.

of vertices with the specified aggregation function fv . Each
snapshot S[i] of G is aggregated into a smaller representation,
i.e., the corresponding snapshot S′[i] at the same timestamp in
G′ (lines 8–18). For each edge (u, v, a), we first map the two
vertices u, v to u′, v′ using h (line 11-12). If there exists an
aggregated edge (u′, v′, a′) in S′[i], we update a′ with a using
fe (lines 16–18), otherwise we insert (u′, v′, a) intoS′[i] directly
(line 14).

It is easy to derive that the time complexity of Algorithm 1
is O(|V|+

∑tend

i=1 |S[i]|). The space used to maintain h,WG′

is O(V′) and we need O(|V′|+
∑tend

i=1 |S′[i]|) space to main-
tain G′. Moreover, we can easily derive that |V′| ≤ |V| and
|S′[i]| ≤ |S[i]|. As a result, the space complexity of Algorithm 1
is O(|V|+

∑tend

i=1 |S[i]|).
Definition 4 (Temporal Graph Cube): Given a temporal mul-

tidimensional network G = (V,S, A,W), the temporal graph
cube is obtained by decomposing A into all possible aggrega-
tions. Each aggregation A′ is a node in the temporal graph cube
and it corresponds to a temporal aggregate networkG′ as defined
in Definition 3.

In [3], Zhao et al. used equivalently the terms cuboid, view and
aggregation. In this paper, however, we only use view and ag-
gregation equivalently, while temporal cuboid is used to refer to
temporal cuboid query. In following sections, computing a view
A′ means materializing the corresponding temporal aggregate
network G′ in memory. IfA′ is precomputed, then for simplicity,
A′ also refers to the corresponding temporal aggregate network
G′.

For a view A′ in the temporal graph cube, dim(A′) denotes
the set of non-∗ dimensions of A′, i.e., dim(A′) = B where
B is the discrete attributes of vertices in G′, the correspond-
ing temporal aggregate network of A′. For two views A′ and
A′′, A′ is an ancestor of A′′ and A′′ is a descendant of A′

if dim(A′) ⊂ dim(A′′), denoted as A′ � A′′. Especially, the

Fig. 4. A sample cube lattice.

base view Abase is a view where dim(Abase) = A, A is the
dimensions of the original temp-multi-network. It is easy to see
that Abase is a descendant of all other views. Another special
view is Aapex = (∗, ∗, . . ., ∗); and it is an ancestor of all other
views in the temporal graph cube.

Example 3: Fig. 4 shows the temporal graph cube lattice built
on the temp-multi-network in Fig. 1, each node on the lattice
represents a view. For each edge in the lattice, the upper view is
an ancestor of the lower view.

Temporal graph cube has the same form with static graph
cube. The only difference is that each node in temporal graph
cube is corresponding to a temporal aggregate network, not a
static aggregate network. For each temporal aggregate network
corresponding to a view, it contains more coarse-grained infor-
mation than that of temporal aggregate network corresponding
to a descendent view at each timestamp. In temporal graph
cube, users can obtain summarized information in different
resolution of the original temp-multi-network in a certain period
by traversing the temporal graph cube lattice with specified
time range. Users can also stay at some nodes in the lattice
and query the summarized information in different time ranges.
In these ways, summarized information of temp-multi-network
in different resolutions and time ranges can be analyzed for
decision support and business intelligence purposes.

III. TEMPORAL OLAP QUERIES

Cuboid and crossboid are two important OLAP queries on
static-multi-networks, or in static graph cubes [3]. In this section,
we propose a generalized definition of OLAP queries in temporal
graph cube, by extending cuboid and crossboid to temporal
cuboid and temporal crossboid respectively.

A. Temporal Cuboid Query

The inputs of temporal cuboid query Q = (A′, [l, r])
in temporal graph cube contain a specified view A′ =
(A′

1, A
′
2, . . ., A

′
n) and a time range [l, r]. The output is a static

aggregate network obtained by the query.
Algorithm 2 is a basic algorithm to conduct temporal cuboid

query on the original temp-multi-network (or on Abase). Same
as Algorithm 1, Algorithm 2 first conducts the specified aggre-
gation on the whole vertex table of the original network, even
those vertices who do not exist in any edge of snapshots in [l, r]
(lines 1–6). In lines 7–15, we merge all snapshots in [l, r] by

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TEMPORAL GRAPH CUBE 13019

Algorithm 2: TemporalCuboidQuery.

collecting all edges of those snapshots and summing the numeric
attributes of edges sharing the same vertices using fe. Then, in
lines 17–25, we map the two vertices of all edges in E′ using
h and compute the aggregation result of edges sharing the same
mapped vertices using fe, which is similar to what Algorithm 1
does in each snapshot S[i] of G (lines 8–18 of Algorithm 1).

Before analyzing the time and space complexity of Algo-
rithm 2, we first give a brief definition of summarized snapshot.

Definition 5 (Summarized Snapshot): Given a temporal
multidimensional network G = (V,S, A,W), the summarized
snapshot S of G is a special snapshot of G and it is the
network structure in the result of a temporal cuboid query
Q = (A, [1 + tbase, tend + tbase]) on G.

In other words, summarized snapshot S of G can be obtained
by merging all snapshots in a snapshot array S .

The time complexity of Algorithm 2 contains three parts:
conducting aggregation on all vertices (lines 1-6), merging all
snapshots in specified time range into E′ (lines 7–15) and
aggregating on E′ (lines 17–25). Thus, the time complexity
of Algorithm 2 is O(|V|+

∑r−tbase

i=l−tbase
|S[i]|+ |E ′|). With the

definition of summarized snapshot, we can rewrite the time
complexity as O(|V|+

∑r−tbase

i=l−tbase
|S[i]|+ |S|), since we can

easily find |E ′| ≤ |S|, where S is the summarized snapshot of
G. The memory consumed by V , h and WG is linearly with
respect to |V | and |V | ≤ |V|. The size of E, E ′ and EP are
all smaller than |S|, so the space complexity of Algorithm 2 is
O(|V|+ |S|).

Given a temporal cuboid query Q = (A′, [l, r]), if we have
precomputed the view A′ with the same aggregation functions,

we can derive the result of Q from G′ by merging snapshots of
G′ in [l, r] instead. Due to the space limit, all the proofs of this
paper are omitted.

Theorem 1: A temporal cuboid query Q = (A′, [l, r]) can be
directly answered from A′ if A′ is precomputed with the same
aggregation functions.

Theorem 1 gives another way to conduct Q. The static ag-
gregate network as the result of Q contains two parts: vertex
table and a snapshot presenting the network structure. When A′

is precomputed, the vertex table of the resulting static aggregate
network is the same with vertex table of G′, the corresponding
temporal aggregate network ofA′, and the network structure can
be obtained by merging all snapshots of G′ in [l, r].

The algorithm of conductingQ onG′ is exactly the subprocess
in lines 7–15 of Algorithm 2 if we replace G with G′. The time
complexity of the simpler algorithm is O(

∑r−tbase

i=l−tbase
|S′[i]|). It

is easy to see that |S′[i]| ≤ |S[i]|, so this simpler algorithm is
better than the baseline algorithm.

If the view A′ is not precomputed while some other view
A′′ is precomputed with the same aggregation functions and
dim(A′) ⊂ dim(A′′), we can use the corresponding temporal
aggregate network G′′ ofA′′ to get the result ofQ. The algorithm
is exactly Algorithm 2, where we only need to replaceG withG′′.

Theorem 2. A temporal cuboid query Q = (A′, [l, r]) can
be answered from A′′ where dim(A′) ⊂ dim(A′′) and A′′ is
precomputed with the same aggregation functions.

The time complexity of conducting Q on G′′ is O(|V′′|+∑r−tbase

i=l−tbase
|S′′[i]|+ |S ′′|), where |V′′|, |S′′[i]| and |S ′′| are ver-

tex set, snapshot at i and summarized snapshot of G′′ respec-
tively. We also have |V′′| ≤ |V|, |S′′[i]| ≤ |S[i]| and |S ′′| ≤ |S|;
and in practice, |V′′|, |S′′[i]| and |S ′′| are much smaller than
|V|, |S[i]| and |S| respectively.

If we have a set of precomputed views {A′′
1, A

′′
2, . . .} with

the same aggregation functions and for each A′′
i , dim(A′) ⊂

dim(A′′
i), which one should we choose in conducting Q using

Algorithm 2? There is a similar problem in static graph cube, in
which we only need to choose the view in {A′′

1, A
′′
2, . . .}with the

smallest size, since the time complexity of conducting a query
Q = (A′) on the basis of A′′

i in static graph cube equals the size
of A′′

i . It is easy to obtain the size of precomputed views of static
graph cube in O(1) time.

However, in temporal graph cube, extra time range should be
specified in each query, so the time complexity of conducting a
query Q = (A′, [l, r]) on A′′

i is not the size of A′′
i . It is hard to

compute the accurate time complexity of Algorithm 2 in O(1)
time. The reasons are as follows:
� If we want to compute the accumulation part

(
∑r−tbase

i=l−tbase
|S[i]|) in the time complexity of Algorithm 2

in O(1) time, an extra prefix array should be maintained.
� The size of summarized snapshot |S| is just an upper bound

of the number of edges visited in E ′ of Algorithm 2. To
get the accurate value of |E ′| as fast as possible, we may
have to build some indexes to get E ′ first. However, it is
also difficult to get |E ′| in O(1) time using indexes (we
will discuss building indexes in Section IV).

As a result, in this paper we choose an arbitrary A′′
i with least

|dim(A′′
i)| in those precomputed views.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

13020 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

After discussing the temporal cuboid query, we can de-
scribe the OLAP operations in temporal graph cube, such as
roll-up, drill-down and slice-and-dice. Suppose that we have
conducted a temporal cuboid query Q0 = (A0, [l, r]). Roll-up
means conducting another query Q1 = (A1, [l, r]) where A1

is an ancestor of A0, so that we get a coarser resolution of
summarized information of temp-multi-network in the same
time range. Drill-down is a contrary operation to obtain a finer
summarized information in the same time range by conducting
Q2 = (A2, [l, r])whereA2 is a descendent ofA0. Slice-and-dice
can be performed by selecting a subset of vertices in the vertex
table of Q0’s result and generating the induced network. For
example, Q0 = ((Profession), [2, 5]) in temporal graph cube
built on temp-multi-network in Fig. 1, we can choose to build an
induced network based on the result of Q0 with only “teacher”
and “student” being selected to show the transactions between
“teacher” and “student” from day 2 to 5.

We can also extend roll-up and drill-down according to the
specified time ranges. A time related roll-up means conducting
a query Q1 = (A0, [l1, r1]) where l1 ≤ l and r1 ≥ r, so that we
can get a coarser resolution of summarized information in time
axis. On the contrary, time related drill-down means conducting
a query Q2 = (A0, [l2, r2]) where l2 ≥ l and r2 ≤ r.

B. Temporal Crossboid Query

The inputs of temporal crossboid query Qcross =
(A′

1, A
′
2, [l, r]) in temporal graph cube contain two specified

views A′
1 = (A′

11, A
′
12, . . ., A

′
1n), A′

2 = (A′
21, A

′
22, . . ., A

′
2n)

and a time interval [l, r], where A′
1 �= A′

2. The output is a
static aggregate bipartite network with two types of aggregated
vertices corresponding to aggregations A′

1 and A′
2 respectively.

We can conduct a temporal crossboid query directly on the
original temp-multi-network. However, it is inefficient due to
the large size of the original temp-multi-network. We omit the
algorithm to conduct a temporal crossboid query on the original
temp-multi-network, but give a more efficient way to conduct
the query.

Definition 6 (Nearest Common Descendant): Given two dif-
ferent views A′

1 and A′
2, cd(A′

1, A
′
2) is common descendant of

A′
1 and A′

2 and it is also a view in temporal graph cube satisfy-
ing dim(A′

1) ∪ dim(A′
2) ⊆ dim(cd(A′

1, A
′
2)). ncd(A

′
1, A

′
2) is

the nearest common descendant of A′
1 and A′

2 and it is one
of the common descendants satisfying dim(ncd(A′

1, A
′
2)) =

dim(A′
1) ∪ dim(A′

2).
Theorem 3: Given a temporal crossboid query Qcross =

(A′
1, A

′
2, [l, r]), Qcross can be answered from the result of

the temporal cuboid query Q = (ncd(A′
1, A

′
2), [l, r]) where

Q,Qcross share the same aggregation function upon vertices
and edges.

With Theorem 3, a temporal crossboid query can be turned
into a temporal cuboid query, and thus can be solved by our
previous techniques.

Algorithm 3 is an algorithm to compute the result ofQcross =
(A′

1, A
′
2, [l, r]) from the result ofQ = (ncd(A′

1, A
′
2), [l, r]). Un-

like Algorithm 2, we need aggregate each vertex on two different
aggregations A′

1 and A′
2 (lines 3–11). For each edge (u, v, a) in

Algorithm 3: TemporalCrossboidQuery.

G, we need to create or update two aggregated edges (u′, v′′, ∗)
and (v′, u′′, ∗) (lines 12–27), because the two directions of
(u, v, a) represent two interactions of aggregated vertices re-
spectively (note that we do not assign u′ ≤ v′′ or v′ ≤ u′′ in
EB). The time complexity of Algorithm 3 is O(|V |+ |E|). We
can easily derive that |V1|+ |V2| ≤ 2|V | and |EB | ≤ 2|E| in
Algorithm 3, so the space complexity of Algorithm 3 is also
O(|V |+ |E|).

IV. THE INDEX-BASED APPROACH

In this section, we propose an index-based approach to process
the temporal cuboid query (temporal crossboid queries can be
transformed to temporal cuboid queries). Recall that for a tem-
poral cuboid query Q = (A′, [l, r]), we need to merge snapshots
of a certain temp-multi-network in time range [l, r] whether A′

is precomputed or not (see lines 8–15 of Algorithm 2). Merging
snapshots in time ranges is similar to the classic range query
problem: answering online queries q = (func, [l, r]) on a nu-
meric arrayArr, where funcmight be SUM(∗), AVERAGE(∗),
MAX(∗) or MIN(∗), specifying the needed statistical results of
values in range [l, r] of Arr. We can regard merging snapshots
in snapshot array as a range query problem on a snapshot array.

Example 4. Fig. 5(a) is a snapshot array of temporal aggre-
gate network of precomputed view (Gender, ∗, P rofession)
in Fig. 3. Here we renumber all vertices and omit the iso-
lated vertices in each snapshot for simplicity. Suppose that

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TEMPORAL GRAPH CUBE 13021

Fig. 5. Range query on a snapshot array.

a range query on the snapshot array in Fig. 5(a) is Q =
((Gender, ∗, P rofession), [2, 4]) with SUM(∗) specified upon
edges. We can derive that the result of Q as shown in Fig. 5(b).

A. The Segment Tree Index

Here we focus mainly on extending the classic segment tree
(STree) structure to support range query on snapshot array when
fe is MAX(∗) or MIN(∗) and the maintenance of STree when
adding new edges. For the other aggregation functions, including
SUM(∗) and AVERAGE(∗), can be processed in a similar way.
Below, we first briefly describe the basic properties of STree.

1) STree is a full binary tree, maintaining values for an array.
If the length of the array is N , the height of STree is
�log(N)�+ 1.

2) Each node in STree maintains statistical result of values
in a sub-range of the array. The root of STree main-
tains the whole range of the array, i.e., [1, N]. The left
child and the right child maintain range [1, �(1 +N)/2�]
and range [�(1 +N)/2�+ 1, N] respectively, which split
[1, N] equally. Both left child and right child can be
regarded as roots of sub-STrees and they both have their
own childs sharing their ranges equally. The above process
for a node ends when its range can not be divided (length
equals 1).

3) The time complexity of building a STree is O(N). The
space complexity of STree is also O(N). The time
complexity of processing a query q = (func, [l, r]) is
O(log(N)).

Unlike traditional range query problem, there are two dif-
ferences in our range query problem: 1) elements in the array
and statistical results in nodes of STree are not numeric values
but snapshots, with edges in form of (u, v,max,min); and 2)
the range of STree might be expanded because of inserting new
edges. Merging statistical information of nodes is a basic and
frequent operation in both building and querying of STree, in
which two statistical results of two nodes produce a new result.
For the first difference, all we need to do is replacing the original
operation on numeric values with MergeSnapshotExtre proce-
dure (see Algorithm 4). We will address the second difference in
the Update algorithm (see Algorithm 5). Below, we first briefly
describe the index building procedure, followed by the query
processing procedure and index updating procedure.

STree Building. We omit the detailed algorithm to build the
STree for a snapshot array, because we only need to replace
the merging operation of two numeric values in the traditional
algorithm of building STree for numeric array with the proposed

Fig. 6. A STree built on the snapshot array in Fig. 5.

Algorithm 4: STreeQuery(treeNode, timel, timer, ans).

MergeSnapshotExtre procedure (see Algorithm 4). For exam-
ple, Fig. 6(a) illustrates a STree STree for the snapshot array
in Fig. 5. Note that each node of STree maintains a snapshot.
Fig. 6(b) shows the snapshot of the node [1, 3] of STree in
Fig. 6(a).

As we have mentioned before, the time complexity for build-
ing a traditional STree isO(N). SinceMergeSnapshotExtrewill
be called in building each node, the time complexity of building
STree for snapshot array of length N is O(N |S|), where S is
the summarized snapshot of the snapshot array. Also, it is easy
to derive that the space usage of the STree building procedure is
O(N |S|).

Query Processing: Algorithm 4 conducts the range query
on snapshot array using STree, and it shares the same
framework with original query algorithm on STree but uses
MergeSnapshotExtre to merge snapshots. Merging snapshots
only happens when the current split range [timel, timer] equals
the range held by the current node treeNode (line 2 in Al-
gorithm 4). In the worst case, it happens at each depth of
STree, so the time complexity of Algorithm 4 is O(log(N)|S|).
For example, suppose we conduct a query Q = (∗, [2, 5]) on
snapshot array in Fig. 5(a) (the view in Q is omitted), we have
to merge snapshots in nodes with range [2, 2], [3, 3] and [4, 5] as
in grey nodes in Fig. 6(a).

Index Updating. Let STree.root.timer be the current largest
timestamp in the STree. When a new edge (u, v, t, a) with t >

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

13022 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Algorithm 5: UpdateSTree.

STree.root.timer comes, we need to expand the range of STree
by creating new nodes to maintain larger range and switch the
root of STree to one of the new nodes.

Suppose that l = STree.root.timel, r = STree.root.
timer, if t > r, we first create a new node newNode with
range [l, 2r − l + 1], which is twice the length of [l, r], so that
STree.root can be a valid left child of newNode. Then, we
let STree.root be the left child of newNode. Finally, we let
newNode be the new root of STree. If [l, 2r − l + 1] still can
not cover t, we continue the process above until t is coverd. The
updated STree is not a fully binary tree, since there is only a
left subtree for the new root which violates the basic properties
of STree. However, it can be seen as a part of a standard STree,
which might be completed by continuously added new edges.

Algorithm 5 is used to update STree. In line 1, the condition in
the while loop is true which means that the current root ofSTree
can not cover t. So, we need to create a new root, which has a
double size of range compared to the current root (line 3-4). In
line 6, we directly copy the snapshot of the current root to the new
root, since there is no possible right child for the new root before
new edge is added. If the range of the candidate new root can not
cover t (it hardly happens because of the density of timestamps
in real-word large scale temporal network), then the loop in
line 1 continues. When STree.root.timer ≥ t is true, we can
use STreeInsertEdge procedure to update STree. In line 11,
we update the snapshot of treeNode with the mapped edge,
since t is in [treeNode.timel, treeNode.timer]. In line 15 and
line 22, we need to test whether the left child or the right child
exists or not and create left child (lines 16-19) or right child
(lines 23–26).

Fig. 7. Two cases of range query on snapshot array.

The time complexity of Algorithm 5 contains two parts:
creating new root in lines 1-7 and inserting new edge using
STreeInsertEdge procedure. Suppose the length of range main-
tained by the root of STree is len1 = STree.root.timer −
STree.root.timel + 1 before new edge is added, and the
length of new range of timestamps in G becomes len2 = t−
STree.root.timel + 1 after G is updated. To cover len2, we
need repeat the loop in line 1 at least x times, and we have

len1 ∗ 2x ≥ len2, x ≥ log

(
len2

len1

)
. (1)

For each loop, the cost mainly comes from line 6. Suppose
that the snapshot maintained in root is Sroot before a new
edge is added, the time complexity of creating the new root is
O(log(len2

len1
)× |Sroot|). In practice, len2 > len1 is hardly true

because len1, the length of range maintained by root, grows ex-
ponentially (lines 3-4) but len2 grows linearly since timestamps
in real-world temporal graph are dense. In STreeInsertEdge
procedure, let the length of range in the final new root is len,
the procedure go through the log(len) + 1 layers of STree,
in each layer it updates the snapshot of node covering t or
creates necessary node first. Since updating a snapshot and
creating a new empty node both contain a constant number of
operations, the time complexity of STreeInsertEdge procedure
is O(log(len) + 1).

V. EFFECTIVENESS OF THE INDEX

In traditional range query problems, indexes are helpful to ac-
celerate the query processing. However, similar indexes cannot
always work in our problem, since the elements in the array are
not numeric values but snapshots.

Consider an example in Fig. 7(a), there is no single edge
shared by any two snapshots (edge e is shared by snapshots
means that there exists an edge that share the vertices with e in
each of those snapshots). In this case, if we merge snapshots in
[t1, t4], the best choice is the baseline method, i.e., traversing
all snapshots in the range and computing the result one by one.
In baseline method, only 4 edges will be visited and each of
them is visited only once. The edges in the result (snapshot at
the right of the arrow in Fig. 7(a)) are exactly those 4 edges, thus

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TEMPORAL GRAPH CUBE 13023

Fig. 8. Four snapshot arrays with different similarity of snapshots.

the baseline method achieves the highest efficiency and there is
no need to build indexes in this case.

Consider the second example in Fig. 7(b), all snapshots share
the same edges. In this case, if we still merge snapshots in
[t1, t4], each edge will be visited 4 times in the baseline method,
therefore it is necessary to build index. Next, we describe the
measurement of the necessity of index and the key factor we
found which affects the necessity of index.

Definition 7 (Acceleration Ratio of Index): For an array Arr
with numeric values or snapshots, we build a segment tree
index on it. For a query q = (func, [l, r]), assume that the basic
components are visited Cb times using the baseline method and
Ci times using the index-based method, the acceleration ratio of
the index on q is Cb

Ci
.

The basic components in snapshot array and index built on
snapshot array are edges. We use the number of visited edges
as the measure of time consumption when conducting a query
using the baseline method and using the index-based method in
Definition 7.

Definition 8 (Similarity of Snapshots): Given a snapshot array
snapArr starting from 1 and containing n snapshots. Suppose
the summarized snapshot of all snapshots in snapArr is S
and E =

∑n
i=1 |snapArr[i]|, the similarity of snapshots in

snapArr is s = E
|S| .

In other words, the similarity of snapshots is the ratio of the
total number of edges in snapshot array to the size of the sum-
marized snapshot. For simplicity, we assume that each snapshot
in snapArr has at least one edge. Clearly, for a snapshot array
of length n, similarity of snapshots s is in [1, n].

Example 5: Consider examples in Fig. 8. There are 4 snapshot
arrays having the same length of 4 but different similarities of
snapshots s. In Fig. 8(a), s = 1, and we can see that there is no
edge shared by any two snapshots, or, snapshots in Fig. 8(a) are
not similar to each other. In Fig. 8(b) and (d), s = 4, all snapshots
share the same edges. In Fig. 8(c), s = 5

3 , and there are edges
shared by some snapshots.

From the above examples, we can see that with the similarity
of snapshots grows, there will be more snapshots in snapshot
array which are similar to each other, or, more edges are shared
by snapshots.

Theorem 4: For two arrays of length n and starting from
1, snapshot array snapArr and numeric array numArr, if
similarity of snapshots in snapArr equals n, then for any

query q = (func, [l, r]) on both snapArr and numArr, the
acceleration ratios of the same index built on them are equal.

Theorem 5: For a snapshot array snapArr of length n and
starting from 1. If similarity of snapshots in snapArr equals 1,
then for query q = (func, [l, r]) on snapArr, the acceleration
ratio of STree is less than or equal to 1.

The above two theorems show the necessity of building index
in two extreme cases. As in Theorem 4, if similarity of snapshots
in snapshot array equals the length of the snapshot array, the
index-based solution achieves the designed acceleration ratio as
they perform in range query on numeric arrays. As in Theorem 5,
if similarity of snapshots in snapshot array equals 1, STree has
no acceleration effect. The baseline method is the best approach
to conduct any query in this case, because the number of edges
in the result is exactly the number of edges being visited in the
baseline method.

It is difficult to model the relationship between similarity of
snapshots and acceleration ratio of the index-based solution on
all possible queries precisely, because similarity of snapshots
describes the overall similarity of snapshots in the snapshot
array, but in specific queries, snapshots in sub-arrays specified
by ranges of the queries may not show the same similarity
as the overall similarity. However, it is possible to model the
relationship roughly. If the similarity of snapshots in snapshot
array equals 1, there is no edge shared by two snapshots and
visited more than once in baseline method. If the similarity of
snapshots in snapshot array equals the length of the array, all
edges are shared by all snapshots. In this case, each edge will
be visited repeatedly in each cycle of baseline method (line 8 in
Algorithm 2), while the index stores summarized snapshots of
some sub-arrays of the snapshot array in advance to reduce
the number of repeated visits on edges. With the similarity of
snapshots grows from 1 to the length of snapshot array, more
edges will be shared by snapshots, making the efficiency of
baseline method lower and efficiency of indexes higher. As a
result, the acceleration ratio of the index grows when similarity
of snapshots grows, which will be confirmed in our experiments
in Section VII-C.

The similarity of snapshots also affects the space consumption
of the index. Since the elements in all snapshot arrays and the
STree built on them are snapshots, we use the total number of
edges in all snapshots to indicate the space consumption. For
example, if we build two STrees STreea and STreeb on both
snapshot arrays in Fig. 8(a) and (b), the snapshot in each node of
STreeb has only one edge, while the snapshot in each node of
STreea may have to store more than one edge, even if Fig. 8(a)
and (b) have the same number of edges.

Definition 9 (Space Consumption Ratio): Consider an array
Arr holding numeric values or snapshots. If Arr is a snapshot
array, suppose the total number of edges in Arr is Ea and the
total number of edges in the index is Ei. If Arr is a numeric
array, Ea, Ei are the total number of numeric values in Arr and
in the index respectively. The space consumption ratio of the
index is Ei

Ea
.

Theorem 6: For two arrays of length n and starting from
1, snapshot array snapArr and numeric array numArr, if
similarity of snapshots in snapArr equals n, then the space

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

13024 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

consumption ratios of the same index built on the two arrays are
equal.

Similar to the acceleration ratio, the space consumption ratio
of the index is also negatively affected by the decrease of
similarity of snapshots.

Theorem 7: For a snapshot array snapArr of length n and
starting from 1. If similarity of snapshots in snapArr equals
1, the space consumption ratio of STree built on snapArr is in
(�log(n)�, �log(n)�+ 1].

From Theorem 7, if similarity of snapshots equals 1, we need
more space to store STree, which may be log(n) + 1 times the
space of the original snapshot array, while only 2 times the space
is needed to store STree if similarity of snapshots equals the
length of the original snapshot array.

Based on the above analysis, we can conclude that the ne-
cessity of building indexes, which can be determined by ac-
celeration ratio and space consumption ratio of indexes, varies
with the similarity of snapshots. This is the main difference
of range query on a snapshot array compared to range query
on a numeric array. Based on this observation, it is better
to build index on the snapshot array with high similarity of
snapshots. This is compatible with the implementation strategy
of Temporal Graph Cube presented in the next section, which
requires precomputing views with high similarity of snapshots
in their snapshot arrays.

VI. PARTIAL MATERIALIZATION

To implement a temporal graph cube, we need precompute,
or materialize some or all views in the temporal graph cube,
since precomputed views can reduce the response time of OLAP
queries and operations like roll-up, drill-down and slice-and-dice
as we discussed in Section III.

In this work, we adopt a partial materialization strategy, i.e.,
we select a set of views to be precomputed in order to balance
the space consumption and average response time according to
the probability distribution of all possible queries. View selection
in traditional data cube scenario is a NP-hard problem [7]. It is
also a NP-hard problem in static graph cube scenario because
traditional data cube can be regarded as a special case of static
graph cube [3]. Similarly, static graph cube can also be regarded
as a special case of temporal graph cube, if only one timestamp
exists in the temporal graph cube. Thus, view selection problem
in temporal graph cube is also a NP-hard problem. In traditional
data cube and static graph cube, view selection problem is usually
solved by heuristic sub-optimal solutions [3], [7], such as greedy
algorithm and its variations [8]. Those heuristic solutions always
measure the effectiveness of the selected views by benefit those
views bring. Here the concept of Benefit was first introduced
in [9], we briefly review the definition of benefit below.

Definition 10 (Benefit of Selected Views): For a sequence of
selected views u1, u2, . . ., uk−1 in the order of being selected
(u1 is always Abase), the benefit of the candidate view u to
be selected next is B(u, Sk−1), i.e., benefit brought by u w.r.t.
Sk−1 = {ui|i ∈ [1, k − 1]}. B(u, Sk−1) is defined as follows:

1) For each w � u, define the quantity Bw by:
a) Let v be the view of least cost in Sk−1 and w � v.

b) IfC(u) < C(v), thenBw = C(v)− C(u). Otherwise
Bw = 0.

2) B(u, Sk−1) =
∑

w�u Bw.
C(∗) returns the cost of views. In traditional data cube and

static graph cube scenario, cost of views is the size of their
corresponding precomputed tables or networks. The total benefit
of selected view sequence is

∑k
i=2 B(ui, Si−1).

In greedy algorithm, among all candidate views, the view u
with the largest B(u, Sk−1) is selected to be uk. For the total
benefit of view sequence generated by each heuristic solution,
the closer to the benefit of the optimal view sequence, the more
effective the solution is.

In Definition 10, the cost of views is used in representation of
the benefit, because the cost of views is also the time complexity
or cost of queries in data cube and static graph cube. However,
cost of views in temporal graph cube (space consumption of the
corresponding temporal aggregate networks of views) cannot
be used as the cost of temporal cuboid queries. First, in Def-
inition 10, C(u) cannot be the cost of temporal cuboid query
Q = (w, [l, r]) if we conduct Q on u. It is similar to C(v). The
reason is that there is a specified time range [l, r] inQ, which does
not exist in any query of traditional data cube or static graph cube.
In implementation of temporal graph cube, we know nothing
about the specified time ranges in all possible queries. Second,
if we use an expected range [le, re] as the representative of all
ranges in all queries according to the probability distribution
of specified ranges in all queries, we may be able to get the
time complexity of conducting Q = (w, [le, re]) on u using the
baseline method by precomputing the total size of snapshots
in [le, re] and the size of summarized snapshot of snapshots
in [le, re]. Only in this way can we get a relatively accurate
benefit for each u. Third, the above precomputing process is
very costly, and it is based on conducting all queries with the
baseline method.

As a result, the greedy algorithm and its variations are not
suitable for view selection problem in temporal graph cube. In
this paper, we adopt a much simpler solution to select views
to be precomputed, MinLevel, which was originally introduced
in [3]. The idea of MinLevel is simple: users are more willing to
query with small number of dimensions, i.e., |dim(A)| is small
in Q = (A, [l, r]). In MinLevel, view A where |dim(A)| = l0
is in the first batch of views to be selected (l0 is an empirical
value). If all the views with l0 dimensions have been selected
and the number of selected views or the total size needed for
precomputing the selected views has not reach the limit, then
we continue to select views with l0 + 1 dimensions until we
select enough number or size of views. In this paper, we select
k views to be precomputed and k is also an empirical value.

VII. EXPERIMENTS

A. Datasets

We conduct experiments on two real-world temp-multi-
networks: DBLP (https://dblp.org/xml) and IMDB (https://
www.imdb.com/interfaces), to evaluate the effectiveness and
efficiency of the temporal graph cube respectively. Below we
introduce the details of the two datasets.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

https://dblp.org/xml
https://www.imdb.com/interfaces
https://www.imdb.com/interfaces

WANG et al.: TEMPORAL GRAPH CUBE 13025

TABLE I
BASIC INFORMATION OF DATASETS

TABLE II
DISCRETIZATION OF PUBLICATION NUMBER PER YEAR

DBLP: The DBLP datasets covers 9 areas in computer sci-
ence: CA (computer architecture), CN (computer network), NS
(network security), SE (software engineering), DB (database),
TH (computer science theory), CG (computer graphics), AI
(artificial intelligence) and HI (human-computer interaction).
Table I illustrates the statistic information of this dataset. For
each vertex (author), there are three dimensions of information:
Name, Area, Productivity. Since we classify all publications
into 9 areas, Area of an author is one of the 9 areas where he
or she has the most publications ever, which can be regarded
as the representative of the focus of his or her papers. For
Productivity, we discrete the number of publications per year
of an author into four different buckets, which is shown in
Table II. The number of publications per year of an author
equals the total number of publications of the author divided
by 2022− y, y is the first year when the author had his or
her first publication. Productivity specifies the ability of pro-
ducing academic papers of an author. Each temporal edge rep-
resents that two authors coauthored a paper at a certain time
(year).

IMDB: The IMDB dataset contains various types of works like
movie, short, video, etc. Each work has the following attributes:
tile, time, titleType, genre, isAdult, rating, voteNum. rating
is a numeric attribute, representing the average rating for the
work from users. voteNum is the number of votes the work has
received. There are some other files about principals of each
work, which will be used as vertices of the temporal network.
In summary, we extract several dimensions for each principal:
Name,Pro,Field,Genre, isAdult,Averating,Hotness.Pro is the
primary profession of a person, e.g., director, actor, producer,
soundtrack, etc., which can be directly extracted from certain
files.Field specifies the field that a person belongs to, e.g., movie,
short, video, etc., which is obtained by counting the types of
the works that the person participates in and choosing the type
having the biggest count. Genre denotes the genre of works that
a person usually participates in, which is obtained by the same
process in obtaining Field. IsAdult represents if a person mainly
works for adult works or not. Averating specifies the average
rating of works that a person participates in, and it shows the
average quality of works related to the person. Hotness denotes
the hotness of works a person usually participates in, which is

TABLE III
ATTRIBUTED INFORMATION OF IMDB

expressed by the average vote number of works related to the
person. Both Averating and Hotness are discretized as shown in
Table III.

We refer to each person (each principal of the work) as a vertex
in the temp-multi-network, and two vertices can form a temporal
edge if they work together for the same work. The timestamp
of the temporal edge is the release time of the work, and the
numeric attribute of the temporal edge is the average rating of
the work. The statistical information of temp-multi-network in
IMDB is shown in Table I.

In the above datasets, temporal edges contain only single
timestamp. There other types of temporal networks with tempo-
ral edges containing time range, which are not considered here.
However, our method can be easily adapted for such datasets
with similar performance. The key is to regard each temporal
edge as a series of temporal edges containing only one timestamp
which is in the original time range. We should also re-define
aggregation function on temporal edges COUNT(∗) as asking
for the total count of time units in connections between two
vertices or two groups of vertices. For example, for a temporal
edge (u, v, ts, te), we can regard (u, v, ts, te) as (te − ts) tem-
poral edges with single timestamp (u, v, ts + 0.5), (u, v, ts +
1.5), . . ., (u, v, te − 0.5). For a query [t1, t2] with COUNT(∗)
satisfying t1 < ts < t2 < te, the aggregation result of (u, v)
should be (t2 − ts). From another perspective, only (u, v, ts +
0.5), (u, v, ts + 1.5), . . ., (u, v, t2 − 0.5) are in range [t1, t2],
so there are total (t2 − 0.5− (ts + 0.5) + 1) = (t2 − ts) time
units in range [t1, t2], which is consist with the previous result. In
the practical we can let all timestamps be multiplied by 2. In this
case, using query [2t1, 2t2] with COUNT(∗) we can obtain the
same result. Finally we can continue to use STree to accelerate
the above query.

B. Effectiveness Evaluation

In this section, we evaluate the effectiveness of temporal
graph cube as a decision-support tool on DBLP. First, we
build temporal graph cube on DBLP and conduct a series
of temporal cuboid queries Q1 = ((Area), [2001, 2006]),
Q2 = ((Area), [2006, 2011]), Q3 = ((Area), [2011, 2016]),
Q4 = ((Area), [2016, 2021]). We also build static graph cube
on DBLP and conduct a cuboid query Qstatic = (Area).
Aggregation functions upon vertices and edges are both
COUNT(∗). The network structures of Q1-Q4 and Qstatic are
shown in Fig. 9, illustrating the co-authorship patterns between
authors grouped by different areas. For simplicity, in Fig. 9(a)
we omit those co-authorships with COUNT(∗) values less than

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

13026 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Fig. 9. Network structures in the results of queries Q1 −Q4 and Qstatic. Q1 = ((Area), [2001, 2006]), Q2 = ((Area), [2006, 2011]), Q3 =
((Area), [2011, 2016]), Q4 = ((Area), [2016, 2021]) are temporal cuboid queries, Qstatic = (Area) is a cuboid query in static graph cube.

Fig. 10. Network structure in the result of Q′
4 = ((Area,

Productivity), [2016, 2021]).

10, 000, which are also omitted in Fig. 9(b), (c), (d), and (e),
regardless of their COUNT(∗) values.

Some interesting observations can be obtained in these re-
sults. For example, authors in each area co-author most with
authors in the same area all the time (Qstatic) and in different
time ranges (Q1 −Q4). We can clearly see that in recent 20
years (Q1 −Q4), the number of co-authorship between each
pair of areas increases over time. However, such results can
never be found in Qstatic. More interestingly, in [2001, 2006],
researchers in TH co-authored most with researchers in CA,
but with the time evolves, researchers in TH are more willing
to co-author with researchers in AI. The reason may be that
theoretical research on AI becomes more and more impor-
tant with the wide applications of AI in recent years. How-
ever, in Qstatic we can only know that researchers in TH co-
authored most with researchers inAI, but ignore the trend above.
In each time range of temporal cuboid queries we can zoom into
a more fine-grained view by conducting a drill-down operation.
For example, for Q4 = ((Area), [2016, 2021]), drill-down can
be a query Q′

4 = ((Area,Productivity), [2016, 2021]). The net-
work structure ofQ′

4 is shown in Fig. 10. For simplicity, we drop
edges with weight less than 10,000 and we only keep vertices re-
lated to areas in {AI,DB} (it can be regarded as a slice-and-dice
operation). In Fig. 9(d), there are 117,338 co-authorships be-
tween researchers of AI and DB in [2016, 2021]. In fine-grained
view of Fig. 10, we can see that the most co-authorships belong
to researchers of poor and fair productivity in AI and DB.

We then examine the effectiveness of temporal crossboid
query.

Fig. 11 shows the results of a series of temporal crossboid
queries:

Qcross1 = ((Name), (Area), [2001, 2006]),

Qcross2 = ((Name), (Area), [2006, 2011]),

Qcross3 = ((Name), (Area), [2011, 2016]),

Qcross4 = ((Name), (Area), [2016, 2021]),

and a static crossboid query Qcross−static = ((Name), (Area)).
Above queries focus on the cross interaction between Name and
Area, i.e., the co-authorship with each area for each researcher.
We further slice-and-dice the results onName to show the results
related to “Jiawei Han”. We can find that in all the queries,
Jiawei cooperated with researchers in DB most. Meanwhile, in
recent 10 years he has more and more cooperations with re-
searchers in AI, which can be ignored compared to cooperations
with researchers in DB in early 10 years. However, in static
crossboid query Qcross−static (Fig. 11(e)) we can only find that
Jiawei cooperated with researchers in DB most, but we ignore
that the number of co-authorships between them is decreasing
while Jiawei co-authored with researchers in AI more and more
frequently.

C. Efficiency Evaluation

Exp-1: Performance of the Index-Based Method. Here we aim
to evaluate how much the index-based solution can accelerate the
merging operation of snapshots in time ranges while processing
temporal cuboid queries, compared to the baseline algorithm
(Algorithm 2). We will also compare other types of indexes with
STree used in this paper later, such as prefix array and sparse
table. As we analyzed before, the average acceleration ratio of
the index-based solution can vary if the similarity of snapshots
in temp-multi-networks changes. In this experiment, we mainly
use IMDB dataset, since vertices in IMDB dataset have 7 dimen-
sions and 27 views can be obtained. For convenience, we only
materialize views in Table IV, among which we only materialize
one view containing dimension Name, because Names of two
persons are hardly the same in IMDB, and thus Name can be
approximately regarded as a primary key and having only one
view containing dimension Name is enough.

We conduct a series of temporal cuboid queries on
materialized views to examine the efficiency of the index-based
method (conducting temporal cuboid queries on materialized
views are all about merging snapshots in time ranges as we

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TEMPORAL GRAPH CUBE 13027

Fig. 11. Network structures in the results of Qcross1 −Qcross4 and Qcross−static. Qcross1 = ((Name), (Area), [2001, 2006]), Qcross2 =
((Name), (Area), [2006, 2011]), Qcross3 = ((Name), (Area), [2011, 2016]), Qcross4 = ((Name), (Area), [2016, 2021]) are temporal crossboid queries,
Qcross−static = ((Name), (Area)) is a static crossboid query in static graph cube.

TABLE IV
MATERIALIZED VIEWS

TABLE V
TIME RANGES OF QUERIES

analyzed in Section III-A). We set a series of time ranges to
be specified in the queries, which are shown in Table V. The
earliest and the latest timestamps in IMDB are 1878 and 2028
respectively. We set 5 groups of time ranges of different length:
4, 10, 20, 50, 100. For each length, we set 10 ranges which are
evenly distributed in [1878, 2028] as shown in Table V. Ranges
at two ends in each length group may be truncated since we try
to keep each time range in [1878, 2028]. Specifically, we set
a series of queries QS1, QS2, . . ., QS7, where QSi is a set of
queries specifying the No.i materialized view in Table IV and
covering all time ranges of all lengths in Table V, i.e., QS1 =
{((Pro), [1878, 1880]), . . ., ((Pro), [2011, 2015]), ((Pro),

TABLE VI
PERFORMANCE OF THE INDEX-BASED SOLUTION (K = 1,000, M = 1,000,000)

[1878, 1883]), . . ., ((Pro), [2008, 2018]), . . ., ((Pro), [1878,
1928]), . . ., ((Pro), [1963, 2028])}.

We set fe = MAX(∗) and use the queries in QS1, . . . , QS7

to test the efficiency of our index-based algorithm. The results
are shown in Table VI. Similar results can also be observed
for the other aggregation functions (fe = COUNT(∗), fe =
SUM(∗), and fe = MIN(∗)). In Table VI, ViewNo. denotes the
No. of materialized views in Table IV, and s is the similarity
of snapshots. The third and the fourth columns are time used
to process all the queries on each materialized view using the
baseline method and the index-based algorithm respectively. For
example, in the first line, processing all queries in QS1 takes
17 s using the baseline method, but consumes 4 s using the
segment-tree index based algorithm. The acce− ratio(ave) is
the average acceleration ratio of the index-based algorithm on
each query, compared to the baseline algorithm. In most cases,
the index-based algorithm can accelerate merging snapshots
in time ranges in conducting queries. However, the effect of
acceleration varies with s. In the No.1 view, where s is the
largest, we can see that the index-based solution achieves the
best average acceleration ratio. We can observe that the average
acceleration ratio of the index-based solution drops if s drops in
general, which confirms our analysis in Section V.

Table VI also shows the space usage of the index-based
solution (6th–8th columns). As can be seen, the size of the
segment-tree based index is only several times larger than the
original size of the views. For example, in the first line, the
original view size is 41K, while our index-based solution takes
only 94K space, with 2.27x more space usage. Also, we can see

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

13028 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

TABLE VII
PERFORMANCE OF PREFIX ARRAY AND SPARSE TABLE

that with s increasing, the space usage of the index-based solu-
tion decreases. These results demonstrate that our segment-tree
based index structure is very space-efficient when s is relatively
large. However, when s is small, e.g., near to 1, the space
overhead of our index-based solution is high. Moreover, when s
is near to 1, the average acceleration ratio is also near to 1 (i.e.,
the index-based solution is only slightly better than the baseline
method). These results indicate that when s is very small, there
is no need to build an index.

We also implement prefix array (preArr, only supports fe =
SUM(∗)) and sparse table (STable, only supports fe = MAX(∗)
or MIN(∗)) to conduct the same queries as a comparison. The
results are shown in Table VII. We can see that the acceleration
ratio of prefix array is close to our solution (STree) but with
more space consumption in most cases. The performance of
prefix array is also influenced by similarity of snapshots, as we
analyzed in Section V. The acceleration ratio of sparse table is
much higher than that of prefix array and STree, but consumes
much more space. Building sparse table even leads to an out-of-
memory on the No. 7 view. Similarly, the performance of sparse
table is also influenced by similarity of snapshots. Overall, our
index-based method, STree, is the best in these three methods
considering both acceleration ratio and space consumption ratio.

Exp-2: Updating Performance of the Index-Based Solution.
Here we evaluate the updating performance of our index-based
solution. We divide all temporal edges in a materialized view into
10 batches equally according to the order of timestamps, e.g.,
the first batch of temporal edges are edges with the smallest
timestamps, and they are added into the index one by one
following the order of timestamps. When edges in a single
batch are added into the index, we record both the time and
space consumption of adding edges in the batch. The results
are shown in Fig. 12. From Fig. 12(a), we can see that with
the number of batch increasing, the time consumption of the
index-updating algorithm increases. These results are consistent
with our analysis in Section IV-A. Moreover, we can observe that
for a large s, the time cost of our index-updating algorithm is
low, while for a small s, the cost is often high. The reason could
be that updating STree involves copying snapshot, i.e., snapshot
in root, which maintains all snapshots in snapshot array, and thus
gets larger if s gets smaller. As shown in Fig. 12(b), the space
consumption of the index-updating algorithm is linear with
respect to the number of batches, indicating that our algorithm

Fig. 12. The updating performance of the index-based solution.

Fig. 13. Performance of strategies in partial materialization. k is the number
of views to be materialized.

is space-efficient. Likewise, we can observe that the algorithm
takes more space for a smaller s. These results further confirm
our analysis in Section IV-A.

Exp-3: Performance of MinLevel in Partial Materialization.
In this experiment we also use IMDB. The greedy strategy
introduced in Section VI is not suitable for partial materialization
in temporal graph cube due to the uncertain time range specified
in queries, which we have analyzed in Section VI. Instead,
we choose a random strategy, i.e., selecting k views to be
materialized randomly, as a comparison to MinLevel. We use
total response time of 40 temporal cuboid queries to evaluate
the performance. In these queries, the number of queries in the
format of ((A1, . . ., Ax), [l, r]) is almost twice as many as the
number of queries in the format of ((A1, . . ., Ax+1), [l, r]), be-
cause users are more willing to query with less dimensions. The
results are shown in Fig. 13. We can see that as k increases, all of
the 4 strategies achieve better performance because more views
are materialized. With proper setting of l0, e.g., l0 = 4,MinLevel
achieves the best performance since most of the queries specified
by users have no more dimensions than 4, and these queries
are more possible to be accelerated compared to the case when
Random strategy is used.

VIII. RELATED WORK

Our work extends data warehouse and OLAP techniques to
temporal multidimensional networks. There are many works
applying data warehouse and OLAP to other data types, such as
stream data [10], spatio-temporal data [11], sequence data [12],
[13], and text data [14]. Except the traditional relational data,
Dehdouh et al. [15] tried to compute data cubes from column-
oriented NoSQL data. As for graph data, except [3], some other
works focus on heterogeneous networks [16], [17]. [18], [19]

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TEMPORAL GRAPH CUBE 13029

improve efficiency of graph OLAP query by parallelization
and distribution. However, none of them focus on temporal
multidimensional networks.

Our work is also related to graph summarization and analysis.
For static graphs, there are some representative works, including
graph compression with MDL (Minimum Description Length)
principle [20], attributed graph compression [21] and graph
clustering based on vertices partitioning [22]. Recently, there
exist several studies on static graph summarization, such as sum-
marizing directed acyclic graph (DAG) [23], summarizing multi-
relation graph [24] where multiple edges of different types may
exist between any pair of vertices, and DPGS model [25], which
can preserve properties like graph spectrum and the authorities
and hubnesses of vertices while reconstructing graph. How-
ever, all of them ignore the temporal information of big graph
data. For temporal graph and dynamic graph, TimeCrunch [26]
summarizes a large dynamic graph with a set of important
temporal structures using MDL, such as ranged full clique,
periodic bipartite core, oneshot star, etc. Some works ([27],
[28], [29], [30], [31], [32]) summarize graph stream into one
sketche. [33], [34] use a sliding window of fixed length to only
summarize the latest snapshots, and [35] only summarize the
current snapshot of a graph stream incrementally and losslessly.
However, in this paper, we can specify arbitrary time window
to query summarized result in real time. Chen et al. [36] also
study summarizing snapshots in arbitrary time window, but they
ignored the attributes of vertices and different views determined
by combinations of those attributes. We summarize graphs based
on selected attributes of vertices, so we can get summarized
information between vertices in different resolutions.

IX. CONCLUSION

In this article, we extend data warehouse and OLAP technol-
ogy to temporal multidimensional networks by proposing a new
data warehouse model Temporal Graph Cube, which provides
knowledge workers with tools to analyze temporal multidimen-
sional networks. We first extend the basic concepts in static
graph cube and introduce two new queries, temporal cuboid and
temporal crossboid, allowing Temporal Graph Cube to support
OLAP queries on temporal multidimensional networks. Then,
we propose a segment-tree based index method to accelerate the
OLAP queries. We also present a new metric to measure the
efficiency of the index. We conduct extensive experiments on
two large real-world datasets, and the results demonstrate the
effectiveness and efficiency of the proposed solutions.

REFERENCES

[1] S. Chaudhuri and U. Dayal, “An overview of data warehousing and olap
technology,” ACM Sigmod Rec., vol. 26, no. 1, pp. 65–74, 1997.

[2] J. Gray et al., “Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals,” Data Mining Knowl. Discov., vol. 1,
no. 1, pp. 29–53, 1997.

[3] P. Zhao, X. Li, D. Xin, and J. Han, “Graph cube: On warehousing and
OLAP multidimensional networks,” in Proc. Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2011, pp. 853–864.

[4] P. Holme, “Modern temporal network theory: A colloquium,” Eur. Phys.
J. B, vol. 88, no. 9, pp. 1–30, 2015.

[5] M. Junghanns, A. Petermann, M. Neumann, and E. Rahm, “Man-
agement and analysis of big graph data: Current systems and open
challenges,” in Handbook of Big Data Technologies, Springer, 2017,
pp. 457–505.

[6] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization methods
and applications: A survey,” ACM Comput. Surv., vol. 51, no. 3, pp. 1–34,
2018.

[7] H. Karloff and M. Mihail, “On the complexity of the view-selection
problem,” in Proc. 18th ACM SIGMOD-SIGACT-SIGART Symp. Princ.
Database Syst., 1999, pp. 167–173.

[8] K. Morfonios, S. Konakas, Y. Ioannidis, and N. Kotsis, “Rolap implemen-
tations of the data cube,” ACM Comput. Surv., vol. 39, no. 4, pp. 12–es,
2007.

[9] V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing data
cubes efficiently,” Acm Sigmod Rec., vol. 25, no. 2, pp. 205–216, 1996.

[10] J. Han et al., “Stream cube: An architecture for multi-dimensional analysis
of data streams,” Distrib. Parallel Databases, vol. 18, no. 2, pp. 173–197,
2005.

[11] L. Gómez, B. Kuijpers, B. Moelans, and A. Vaisman, “A survey of spatio-
temporal data warehousing,” Int. J. Data Warehousing Mining, vol. 5, no. 3,
pp. 28–55, 2009.

[12] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W. Cheung, “Olap
on sequence data,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008,
pp. 649–660.

[13] M. Liu et al., “E-Cube: Multi-dimensional event sequence analysis using
hierarchical pattern query sharing,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2011, pp. 889–900.

[14] C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao, “Text cube: Computing ir
measures for multidimensional text database analysis,” in Proc. IEEE 8th
Int. Conf. Data Mining, 2008, pp. 905–910.

[15] K. Dehdouh, F. Bentayeb, O. Boussaid, and N. Kabachi, “Columnar
noSQL cube: Agregation operator for columnar noSQL data warehouse,”
in Proc. IEEE Int. Conf. Syst. Man Cybern., 2014, pp. 3828–3833.

[16] M. Yin, B. Wu, and Z. Zeng, “Hmgraph olap: A novel framework for multi-
dimensional heterogeneous network analysis,” in Proc. 15th Int. Workshop
Data Warehousing OLAP, 2012, pp. 137–144.

[17] P. Wang, B. Wu, and B. Wang, “Tsmh graph cube: A novel framework for
large scale multi-dimensional network analysis,” in Proc. IEEE Int. Conf.
Data Sci. Adv. Anal., 2015, pp. 1–10.

[18] Z. Wang, Q. Fan, H. Wang, K.-L. Tan, D. Agrawal, and A. El Abbadi,
“Pagrol: Parallel graph OLAP over large-scale attributed graphs,” in Proc.
IEEE 30th Int. Conf. Data Eng., 2014, pp. 496–507.

[19] H. Chen et al., “High performance distributed OLAP on property graphs
with grasper,” in Proc. Proc. ACM SIGMOD Int. Conf. Manage. Data,
2020, pp. 2705–2708.

[20] S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph summarization with
bounded error,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008,
pp. 419–432.

[21] Y. Wu, Z. Zhong, W. Xiong, and N. Jing, “Graph summarization for
attributed graphs,” in Proc. Int. Conf. Inf. Sci. Electron. Elect. Eng., 2014,
pp. 503–507.

[22] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on struc-
tural/attribute similarities,” Proc. VLDB Endowment, vol. 2, no. 1,
pp. 718–729, 2009.

[23] X. Zhu, X. Huang, B. Choi, and J. Xu, “Top-k graph summarization on
hierarchical DAGs,” in Proc. 29th ACM Int. Conf. Inf. Knowl. Manage.,
2020, pp. 1903–1912.

[24] X. Ke, A. Khan, and F. Bonchi, “Multi-relation graph summarization,”
ACM Trans. Knowl. Discov. From Data, vol. 16, no. 5, pp. 1–30, 2022.

[25] H. Zhou, S. Liu, K. Lee, K. Shin, H. Shen, and X. Cheng, “DPGS: Degree-
preserving graph summarization,” in Proc. SIAM Int. Conf. Data Mining,
2021, pp. 280–288.

[26] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, “Timecrunch:
Interpretable dynamic graph summarization,” in Proc. 21th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2015, pp. 1055–1064.

[27] O. Mudannayake and N. Ranasinghe, “kMatrix: A space efficient stream-
ing graph summarization technique,” in Proc. IEEE 10th Int. Conf. Inf.
Automat. Sustainability, 2021, pp. 161–166.

[28] N. Tang, Q. Chen, and P. Mitra, “Graph stream summarization: From
big bang to big crunch,” in Proc. Int. Conf. Manage. Data, 2016,
pp. 1481–1496.

[29] Z. Ma, J. Yang, K. Li, Y. Liu, X. Zhou, and Y. Hu, “A parameter-free
approach for lossless streaming graph summarization,” in Proc. Database
Syst. Adv. Appl.: 26th Int. Conf., Taipei, Taiwan, Apr. 11–14, 2021,
pp. 385–393.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

13030 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

[30] N. Ashrafi-Payaman, M. R. Kangavari, S. Hosseini, and A. M. Fander,
“GS4: Graph stream summarization based on both the structure and
semantics,” J. Supercomput., vol. 77, pp. 2713–2733, 2021.

[31] X. Gou, L. Zou, C. Zhao, and T. Yang, “Fast and accurate graph
stream summarization,” in Proc. IEEE 35th Int. Conf. Data Eng., 2019,
pp. 1118–1129.

[32] M. Chen, R. Zhou, H. Chen, and H. Jin, “Scube: Efficient summarization
for skewed graph streams,” in Proc. IEEE 42nd Int. Conf. Distrib. Comput.
Syst., 2022, pp. 100–110.

[33] S. Fernandes, H. Fanaee-T, and J. Gama, “Dynamic graph summarization:
A tensor decomposition approach,” Data Mining Knowl. Discov., vol. 32,
no. 5, pp. 1397–1420, 2018.

[34] I. Tsalouchidou, F. Bonchi, G. D. F. Morales, and R. Baeza-Yates, “Scal-
able dynamic graph summarization,” IEEE Trans. Knowl. Data Eng.,
vol. 32, no. 2, pp. 360–373, Feb. 2020.

[35] J. Ko, Y. Kook, and K. Shin, “Incremental lossless graph summarization,”
in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020,
pp. 317–327.

[36] M. Chen, R. Zhou, H. Chen, J. Xiao, H. Jin, and B. Li, “Horae: A graph
stream summarization structure for efficient temporal range query,” in
Proc. IEEE 38th Int. Conf. Data Eng., 2022, pp. 2792–2804.

Guoren Wang received the BS, MS, and PhD de-
grees from the Department of Computer Science,
Northeastern University, China, in 1988, 1991, and
1996, respectively. Currently, he is a professor with
the Beijing Institute of Technology (BIT), Beijing,
China. His research interests include graph data man-
agement, graph mining, and graph computational sys-
tems.

Yue Zeng is currently working toward the masters
degree with the Beijing Institute of Technology (BIT),
Beijing, China. His research interests include graph
data management and social network analysis.

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong, in 2013. He is cur-
rently a professor with the Beijing Institute of Tech-
nology (BIT), Beijing, China. His research interests
include graph data management and mining, social
network analysis, graph computational systems, and
graph-based machine learning.

Hongchao Qin received the BS degree in mathemat-
ics, ME and PhD degrees in computer science from
Northeastern University, China, in 2013, 2015 and
2020, respectively. He is currently a postdoc with the
Beijing Institute of Technology, China. His current
research interests include social network analysis and
data-driven graph mining.

Xuanhua Shi (Senior Member, IEEE) received the
PhD degree in computer engineering from HUST,
China, in 2005. He is a professor in Service Com-
puting Technology and System Lab and Cluster and
Grid Computing Lab, HUST (China). His current
research interests focus on the scalability, resilience
and autonomy of large-scale distributed systems, such
as peta-scale systems, and data centers.

Yubin Xia (Affiliate, IEEE) received the deploma de-
gree in software school, Fudan University, Shanghai,
China, in 2004, and the PhD degree in computer sci-
ence and technology from Peking University, Beijing,
China, in 2010. He is now an associate professor
in Shanghai Jiao Tong University since Sep. 2012.
His research interests include computer architecture,
operating system, and security.

Xuequn Shang received the PhD degree in computer
science from the University of Magdeburg, Germany,
in 2005. She is currently a professor in School of
Computer Science, Northwestern Polytechnical Uni-
versity, China. Her research interests include data
mining, bioinformatics and machine learning.

Liang Hong received the BS and PhD degrees in
computer science from the Huazhong University of
Science and Technology (HUST), in 2003 and 2009,
respectively. Now, he is an associate professor in
School of Information Management of Wuhan Uni-
versity. His research interests include graph database,
spatio-temporal data management and social net-
works.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:36:29 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

