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Abstract—Random walk based graph sampling has been recog-
nized as a fundamental technique to collect uniform node samples
from a large graph. In this paper, we first present a comprehensive
analysis of the drawbacks of three widely-used random walk
based graph sampling algorithms, called re-weighted random
walk (RW) algorithm, Metropolis-Hastings random walk (MH)
algorithm and maximum-degree random walk (MD) algorithm.
Then, to address the limitations of these algorithms, we propose
two general random walk based algorithms, named rejection-
controlled Metropolis-Hastings (RCMH) algorithm and gener-
alized maximum-degree random walk (GMD) algorithm. We
show that RCMH balances the tradeoff between the limitations
of RW and MH, and GMD balances the tradeoff between the
drawbacks of RW and MD. To further improve the performance
of our algorithms, we integrate the so-called delayed acceptance
technique and the non-backtracking random walk technique into
RCMH and GMD respectively. We conduct extensive experiments
over four real-world datasets, and the results demonstrate the
effectiveness of the proposed algorithms.

I. INTRODUCTION

Online social network analysis has attracted extensive at-
tention in recent years. A fundamental problem in online
social network analysis is estimating the nodal or topological
characteristics of the network [1]. However, in the context
of online social networks, this problem is very challenging
[2]. The reason is because in most online social networking
platforms, such as Facebook (http://www.facebook.com/) and
Twitter (http://twitter.com/), the network topology is typically
unknown to the researchers. Furthermore, in most scenarios,
the size of the network is also unknown [1], [2]. As a result, it
is impossible to perform “independent random sampling” over
the nodes of the network. To overcome this problem, many
graph sampling via crawling techniques have been widely-used
[3], [4]. These approaches can be roughly classified into two
categories: graph-traversal based methods [3], [5], [6], [4] and
random walk based methods [7], [8], [9], [10], [1]. Graph-
traversal based methods apply the breadth-first search (BFS)
or the depth-first search (DFS) algorithm to collect nodes.
These algorithms, however, typically introduce a bias towards
high-degree nodes [4]. Moreover, such a bias is unknown,
and it is also very hard to analyze in general graphs [4].
Instead, the random walk based methods are very popular for
graph sampling, because they can produce unbiased samples
or generate samples with a known bias.

In the literature, there are three widely-used random walk
based sampling algorithms: the re-weighted random walk (RW)
[9], [1], [8], the Metropolis-Hastings random walk (MH) [10],
[1], and the maximum-degree random walk (MD) [7], [11].

∗ Dr. Rui Mao is the corresponding author.

Specifically, RW first performs a traditional random walk on a
graph to collect nodes, and then constructs an unbiased estima-
tor by using a re-weighting strategy [1]. As shown in Section II,
the effectiveness of RW relies on the similarity between the
stationary distribution of the random walk (proportional to the
node degree) and the uniform distribution. However, in many
real-world graphs, the stationary distribution of the random
walk is very far from the uniform distribution. Thus, RW
suffers from the large deviation problem, i.e., the deviation
between the stationary distribution of the random walk and
the uniform distribution is very large. MH [10], [1] performs
a Metropolis-Hastings random walk on a graph to collect node
samples which produces a uniform stationary distribution. This
algorithm, however, must reject a large number of nodes to
get the uniform samples. The performance of this algorithm is
therefore dependent on its sample acceptance ratio. However,
as observed in our experiments, the acceptance ratio of MH
is typically very low in real-world networks. Therefore, MH
generally suffers from the sample rejection problem. MD runs
a maximum-degree random walk to gather nodes [7]. Unlike
the traditional random walk, in each step, the maximum-degree
random walk selects a neighbor node with probability 1/dmax

where dmax is the maximum degree of the nodes in a graph.
For any node u with degree du, this process is equal to the
process of adding dmax − du self-loops on u and then per-
forming the traditional random walk on such a modified graph.
As shown in [7], the stationary distribution of the maximum-
degree random walk is the uniform distribution. However,
to achieve the uniform stationary distribution, MD needs to
traverse the self-loops, thus resulting in a large number of
repeated samples. Too many repeated samples generally leads
to a large variance for the random walk based algorithms [2].
Consequently, MD suffers from the repeated samples problem.

Our contributions. To address the limitations in previous
algorithms, in this work, we propose two novel random walk
based graph sampling algorithms. To the best of our knowl-
edge, we are the first group to systematically analyze the
drawbacks of the existing random walk based graph sampling
algorithms, and present new solutions to balance the tradeoffs
of these drawbacks. More specifically, to balance the tradeoff
between the large deviation problem of RW and sample
rejection problem of MH, we propose a rejection-controlled
Metropolis-Hastings (RCMH) algorithm. We show, in both
theory and experiments, that RCMH can mitigate the large de-
viation problem of RW and reduce the sample-rejection ratio of
MH simultaneously by setting an appropriate parameter, thus
providing a good tradeoff between the limitations of RW and
MH. Moreover, we show that both RW and MH are two special
cases of RCMH, thus our algorithm establishes a connection
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between these two widely-used graph sampling algorithms.
On the other hand, we devise a generalized maximum-degree
random walk (GMD) algorithm to balance the tradeoff between
the large deviation problem of RW and the repeated samples
problem of MD. We prove that by setting an appropriate
parameter, GMD can not only alleviate the large deviation
problem of RW, but it is also expected to produce a smaller
number of repeated samples compared to MD. GMD is also
very general which treats RW and MD as two special cases,
thus creating an interesting link between RW and MD.

We present several optimization techniques to further im-
prove the estimation accuracy of RCMH and GMD. Specifi-
cally, we integrate the so-called delayed acceptance technique
developed in [2] into RCMH to reduce the asymptotic variance
[12]. For GMD, we propose a non-backtracking GMD algo-
rithm, called NGMD, which integrates the non-backtracking
random walk technique [2]. Based on the non-backtracking
random walk, we show that NGMD not only preserves the
same stationary distribution as GMD, but it also reduces
the asymptotic variance [12] of GMD. Finally, we conduct
extensive experiments over four real-world graphs to evaluate
the proposed algorithms. The results show that our algorithm-
s significantly outperform the state-of-the-art algorithm for
unbiased graph sampling by setting appropriate parameters.
We also provide an empirical recommendation on setting the
parameters of our algorithms to achieve good tradeoffs of the
limitations of the previous algorithms.

Organization. The rest of this paper is organized as follows.
Below, we will further review the previous research related
to ours. After that, we present a detailed analysis of the
limitations of RW, MH and MD in Section II. The RCMH and
GMD algorithms are presented in Section III and Section IV,
respectively. In Section V, we propose several optimization
techniques to improve the estimation accuracy of RCMH
and GMD. Extensive experimental studies are reported in
Section VI. We conclude this work in Section VII.

Further related work. Graph sampling via crawling has
gained much interest in recent years. Except the methods
discussed previously, a recent notable work is [13] where
the authors propose an elegant random walk based algorithm,
aiming at reducing the mixing time of the random walk. This
method is very useful when one wants to generate independent
samples (i.e., performing a random walk to generate one sam-
ple). However, in many real-world applications, such as degree
distribution estimation [1], [2], clustering coefficient estimation
[14], size estimation [15], and average degree estimation [16],
it has turned out that using dependent samples (i.e., all samples
are generated by only one random walk) is good enough
to construct a very accurate estimator. On the other hand,
many online social networks are known to have low mixing
time [17], [14], [18]. Therefore, reducing the mixing time
may not significantly improve the effectiveness of the random
walk based algorithms for such applications. In this work, we
propose two novel algorithms to balance the tradeoffs of the
limitations of the existing random walk based algorithms. Our
work is complementary to [13], and the techniques in [13]
could also be integrated in our algorithms.

Besides graph sampling via crawling, there are some oth-
er graph sampling algorithms [3], [6], [19]. For example,

Leskovec and Faloutsos [3] compared a lot of graph sampling
algorithms based on a known graph topology. In [19], Maiya
and Berger-Wolf proposed an expansion-based sampling algo-
rithm to sample a subgraph so that it can preserve the com-
munity structures. Subsequently, the same authors presented a
detailed study on the benefits of biases in different sampling
algorithms [6]. However, most of these sampling algorithms
can only work on the known graph topology. Our algorithms,
however, can work on an unknown graph topology, which is
clearly more practical for sampling online social networks.
Another line of research is to devise random walk based graph
sampling algorithms to handle the disconnected graphs. Such
algorithms include the parallel random walks method [1], the
multidimensional random walk method [20], and the random
walk with jump algorithm [21]. The proposed algorithms are
complementary to these approaches, and these techniques can
also be combined into our algorithms.

II. BACKGROUND AND MOTIVATION

Consider an undirected graph G = (V,E) with n = |V |
nodes and m = |E| edges. Denote by N(u) the set of
neighbors of node u ∈ V , and by du = |N(u)| the degree of u.
Following the standard notations in graph sampling literature
[9], [2], the unbiased graph sampling problem is to estimate
the following quantity:

Eπu(f)
Δ
=

∑
u∈V

f(u)/n, (1)

where πu = [1/n, · · · , 1/n] denotes a uniform distribution and
f : V → R is a real-valued function defined on the node set
V . Notice that the function f can characterize different nodal
or topological properties of a graph depending on different
definitions [9], [2]. For example, if f is defined by f(u) = du
for all u ∈ V , then the quantity Eπu(f) denotes the average
degree of the graph G. If f is defined by f(u) = 1{du=d} for
all u ∈ V given that d = 1, · · · , n−1, then Eπu(f) denotes the
degree distribution of G. Here 1{du=d} is an indicator function,
i.e., if du = d, 1{du=d} = 1, 1{du=d} = 0 otherwise.

In this paper, we focus on random walk based algorithms
for estimating Eπu(f). In the literature, there are three random
walk based algorithms that can produce unbiased estimators
for Eπu(f). These algorithms are the Re-weighted random
walk algorithm (RW) [9], [8], [1], the Metropolis-Hastings
random walk algorithm (MH) [10], [1], and the maximum-
degree random walk algorithm (MD) [7], [11]. Below, we
review these algorithms and discuss their pros and cons as
well.

Re-weighted random walk (RW). The RW algorithm per-
forms a random walk on graph to collect nodes [9], [1]. It
is well-known that, in a connected, aperiodic and undirected
graph, the stationary distribution of a random walk is pro-
portional to the node degree [22], i.e., πrw(u) = du/2m for
all u ∈ V . Based on this fact, the nodes collected by the
random walk are biased toward high-degree nodes. To correct
such bias, the RW algorithm makes use of a re-weighting
strategy which can be done using the well-known Hanse-
Hurwitz estimator [8], [9], [23], [1]. In particular, the estimator
in RW is given by

Eπrw (f) =

∑
u∈S f(u)wrw(u)∑

u∈S wrw(u)
, (2)
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where S is the set of sampled nodes and wrw(u) ∝ 1/du
denotes the weight of node u. Note that here the weight
wrw(u) can be up to any multiplicative constant.

It was shown that the above estimator can be interpret-
ed using the importance sampling (IS) framework [9], [23].
Specifically, instead of drawing nodes from the target dis-
tribution, the IS framework samples nodes from a different
and easily implemented trial distribution [12]. In the RW
algorithm, the target distribution is the uniform distribution
πu, and the trial distribution is πrw. According to the IS
framework [12], the importance weight for a node u is
given by wrw(u)

Δ
= πu(u)/πrw(u) = 2m/ndu ∝ 1/du

meeting the definition in Eq. (2). It was turned out that
the estimator Eπrw(f) is asymptotically unbiased [12], i.e.,
Eπrw(f) → Eπu(f) as n → ∞. The variance of the estimator
Eπrw(f) depends on the variance of f(u)wrw(u). If f(u) is
uncorrelated with wrw(u) = πu(u)/πrw(u), such variance
relies on the similarity between πu(u) and πrw(u). Intuitively,
the closer the trial distribution πrw and the target distribution
πu are, the lower the variance of the estimator Eπrw(f). Liu
in [12] proposes a “rule of thumb” to quantify this intuition
which can also be used to measure the effectiveness of the
IS framework. Specifically, assume that there is an estimator
Ê using N independent samples from the target distribution q
(q = πu in our case). Then, Liu’s “rule of thumb” states that
the number of samples from the trial distribution p (p = πrw

in our case) is at most N(1 + varp(q(X)/p(X))) to achieve
the same variance as that of Ê [12], [11], [24], [25]. As a
consequence, we strive to seek a trial distribution p such that
varp(q(X)/p(X)) (also called the χ-distance between q and
p [12]) is as small as possible.

In RW, the trial distribution πrw is proportional to the
degree of nodes, while the target distribution is the uniform
distribution πu. As shown in our experiments, πrw is typically
far from the uniform distribution πu in many real-world
graphs. That is to say, there is a large deviation between the
trial and target distributions of RW in many real-world graphs.
By Liu’s “rule of thumb”, the effectiveness of RW depends on
the similarity between πu and πrw. Therefore, in many real-
world graphs, RW suffers from the large deviation problem.

Metropolis-Hastings random walk (MH). The MH algorithm
is an application of the Metropolis-Hastings algorithm [26],
[27] for unbiased graph sampling. It makes use of a modified
random walk to draw nodes from the graph. In particular, it
modifies the transition probabilities of a random walk so that
the walk converges into a uniform distribution. The transition
probability of MH is given by

Pmh
uv =

⎧⎨
⎩

1/du ×min{1, du/dv}, if v ∈ N(u),
1−∑

u �=w Pmh
uw , if u = v,

0, otherwise,
(3)

where min{1, du/dv} is the acceptance function of MH. Let
v ∈ N(u) be a neighbor of node u. When MH draws a
node v from N(u) with probability 1/du, MH accepts v as
a sample with probability min{1, du/dv}, and reject it with
probability 1 − min{1, du/dv}. It has turned out that the
stationary distribution of MH is πmh = πu = [1/n, · · · , 1/n]
[10], [1]. Therefore, the sample mean obtained by MH can be
directly used to construct an unbiased estimator for Eπu(f).
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Fig. 1: Running example

Using the language in IS framework, the trial distribution of
MH is equivalent to the target distribution, i.e., πu = πmh.
This suggests that MH can overcome the large deviation
problem of RW. However, this is not free. To obtain the
uniform samples, MH has to reject a considerable number of
samples. In other words, to achieve the same sample size as
that of RW, MH generally needs to draw a lot more nodes than
RW. In the setting of unbiased graph sampling, the primary
costs of different algorithms are measured by the number of
nodes drawn by various algorithms [1]. If we fix the number of
nodes that different algorithms need to draw, then the number
of final samples obtained by MH is much smaller than that of
RW, which clearly degrades the performance of MH. Hence,
the MH algorithm suffers from the sample rejection problem.

Maximum-degree random walk (MD). The MD algorithm
runs a random walk on a dynamically created regular graph to
collect nodes [7], [11]. The idea is that the algorithm modifies
the original graph into a regular graph by adding self-loops
on the nodes so that the degree of each node equals the
maximum degree of the original graph. Note that this can
be done implicitly and on-the-fly. Specifically, when the walk
traverses a node u, the walk selects a neighbor node from N(u)
with probability 1/dmax, where dmax denotes the maximum
degree of the original graph. Following this process, in each
step, the walk stays at u with probability (dmax − du)/dmax.
That is to say, the walk traverses the self-loop with probability
(dmax−du)/dmax. Fig. 1(a) and Fig. 1(b) illustrate the original
graph and the corresponding regular graph respectively. For the
graph in Fig. 1(a), the maximum degree is 4. Hence, each node
in the corresponding regular graph shown in Fig. 1(b) has a
degree of 4 including self-loops. The maximum-degree random
walk on a graph is equivalent to the traditional random walk
on the corresponding regular graph. This fact indicates that the
stationary distribution of the maximum-degree random walk is
a uniform distribution. As a result, the sample mean obtained
by MD can be directly utilized to construct an unbiased
estimator for Eπu(f) [7]. Similarly, using the language in
IS framework, the trial distribution of MD is equal to the
target distribution πu. Therefore, MD can circumvent the large
deviation problem of RW.

MD also has its drawbacks. First, the algorithm will produce
many repeated samples, because MD needs to traverse the
self-loops. This issue worsens when the walk traverses the
low-degree nodes as these nodes must add many self-loops.
Note that too many repeated samples typically result in a large
variance for the random walk based samplers [2]. Thus, MD
suffers from the repeated samples problem. Second, MD re-
quires the knowledge of maximum degree which is impractical
in the context of unbiased graph sampling via crawling. To
overcome this problem, Bar-Yossef et al. [7] propose to set
a very large constant as the maximum degree. Clearly, this
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process aggravates the repeated samples problem if such a
constant is larger than the maximum degree.

The above analysis motivates us to ask the following
questions. Can we have a sampling algorithm that achieves
a tradeoff between the large deviation problem of RW and
the sample rejection problem of MH? And can we devise an
algorithm that can balance the large deviation problem of RW
and the repeated samples problem of MD? In the following
two sections, we shall present two novel algorithms to achieve
these purposes.

III. THE RCMH ALGORITHM

In this section, we propose a novel rejection-controlled
Metropolis-Hastings (RCMH) algorithm which balances the
tradeoff between the large deviation problem of RW and the
sample rejection problem of MH. Below, we first describe the
RCMH algorithm in a general form and analyze its theoretical
properties. Then, we show how to apply the RCMH algorithm
to unbiased graph sampling.

A. Rejection-controlled Metropolis-Hastings Algorithm

The key idea of the rejection-controlled Metropolis-
Hastings (RCMH) algorithm is as follows. First, we devise
a novel Metropolis-Hastings-type algorithm called RCMH
algorithm whose acceptance function is parameterized by a
parameter α ∈ [0, 1]. Such a newly-devised acceptance func-
tion allows us to improve the acceptance ratio of the original
Metropolis-Hastings algorithm. Note that, after modifying the
acceptance function, the stationary distribution of the RCMH
algorithm is no longer the target distribution of the original
Metropolis-Hastings algorithm. Second, we prove that the χ-
distance between the stationary distribution of the RCMH
algorithm and the target distribution of the original Metropolis-
Hastings algorithm is smaller than the χ-distance between the
trial and target distribution of the original Metropolis-Hastings
algorithm. The detailed description of RCMH is given below.

First, let us define some useful notations. Let U be a finite
space, p be the probability distribution on U . The support of p
is defined as supp(p) = {u ∈ U|p(u) > 0}. Let p and π be the
trial and target distributions of the original Metropolis-Hastings
algorithm, respectively. Denote by P the initial Markov Chain
of the original Metropolis-Hastings algorithm with stationary
distribution p. By the basic assumption of the Metropolis-
Hastings algorithm [27], [12], [11], P is ergodic and it satisfies
the following conditions: (1) P (u, v) > 0 ⇔ P (v, u) > 0 for
all u, v ∈ U , and (2) supp(p) = supp(π). Further, we assume
that P is time-reversible, i.e., p(u)P (u, v) = p(v)P (v, u) (this
is indeed the case in unbiased graph sampling). The RCMH
algorithm is identical to the original Metropolis-Hastings al-
gorithm, except its acceptance function r(u, v, α) which is
defined by

r(u, v, α) = min{(π(v)P (v, u)

π(u)P (u, v)
)α, 1} = min{(π(v)p(u)

π(u)p(v)
)α, 1},

(4)
where α ∈ [0, 1] is the rejection-controlled parameter, π
is the target distribution of the original Metropolis-Hastings
algorithm, and the second equality is due to the time-reversible
property of P . Clearly, the acceptance function r(u, v, α) is a
monotonically decreasing function w.r.t. the parameter α. If
α ∈ [0, 1), we have r(u, v, α) > r(u, v, 1). It is important to

note that when α = 1, the acceptance function is the same
as that of the original Metropolis-Hastings algorithm. There-
fore, in this case, the RCMH algorithm becomes the original
Metropolis-Hastings algorithm. Obviously, at any state u ∈ U ,
the acceptance ratio of the RCMH algorithm (r(u, v, α)) is
larger than that of the original Metropolis-Hastings algorithm
(r(u, v, 1)) when α ∈ [0, 1). In addition, when α = 0, the
acceptance function always equals 1 (in this case, the next
state is always accepted); therefore, the Markov Chain of the
RCMH algorithm is the same as the initial Markov Chain P .

Based on the acceptance function r(u, v, α), the probability
transition matrix of the Markov Chain of the RCMH algorithm
is given by

Prcmh(u, v) =

{
P (u, v)r(u, v, α), if u �= v,
1−∑

u�=w Prcmh(u,w), otherwise.
(5)

The following theorem shows that the Markov Chain of the
RCMH algorithm is ergodic, and thus it has a unique stationary
distribution denoted by πrcmh.

Theorem 3.1: Prcmh forms an ergodic Markov
Chain and its unique stationary distribution πrcmh

meets the following condition: for any pair of
states u, v ∈ supp(πrcmh), πrcmh(u)/πrcmh(v) =
p(v, u)(π(u)p(u, v))α/(p(u, v)(π(v)p(v, u))α) holds.
Further, assume that p(u, v) = p(u,w) holds, for any
u, v, w ∈ supp(πrcmh). Then, πrcmh is given by
πrcmh(u) = (π(u)p(u, v))α/(Z × p(u, v)), where Z is
a normalization constant.

Proof: The proof is omitted due to space limit.

Next, we prove that the χ-distance [12] between the tar-
get distribution π and πrcmh is smaller than the χ-distance
between π and p. Specifically, we have the following theorem.

Theorem 3.2: varπrcmh( π(u)
πrcmh(u) ) ≤ varp(

π(u)
p(u) ).

Proof: By our assumptions, one can easily deduce that
supp(πrcmh) = supp(π) = supp(p). Based on this, we have

Eπrcmh [π(u)/πrcmh(u)] =
∑

u∈supp(πrcmh) π(u)
=

∑
u∈supp(π) π(u) = 1.

Similarly, we have Ep[π(u)/p(u)] = 1. Therefore, to prove
the theorem, it is enough to show

Eπrcmh [(π(u)/πrcmh(u))2] ≤ Ep[(π(u)/p(u))
2].

Specifically, we have

Ep[(π(u)/p(u))
2]− Eπrcmh [(π(u)/πrcmh(u))2]

=
∑

u∈supp(p)

π2(u)/p(u)− ∑
u∈supp(πrcmh)

π2(u)/πrcmh(u)

=
∑

u∈supp(p)

π2(u)[1/p(u)− 1/πrcmh(u)]

=
∑

u∈supp(p)

π2(u)[
∑

v∈supp(p) p(v)

p(u)
−

∑
v∈supp(p) πrcmh(v)

πrcmh(u)
]

=
∑

u∈supp(p)

∑
v∈supp(p)

π2(u)[ p(v)
p(u)
− πrcmh(v)

πrcmh(u)
].

(6)

Then, by Theorem 3.1 and p(u)P (u, v) = p(v)P (v, u), we
have

πrcmh(v)

πrcmh(u)
=

p(v)(π(v)p(u))α

p(u)(π(u)p(v))α
. (7)
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Algorithm 1 RCMH algorithm for graph sampling

1: u← initial node;
2: while stopping condition does not satisfy do
3: Select a node v uniformly at random from neighbors of u;
4: Generate a uniform random value q ∈ [0, 1];
5: if q ≤ (du/dv)

α then
6: u← v;
7: else
8: Stay at u;

Let g(u, v) = π2(u)[p(v)/p(u) − πrcmh(v)/πrcmh(u)].
Then, for any pair of states u, v ∈ supp(p), we let
h(u, v) = g(u, v) + g(v, u). To prove Ep[(π(u)/p(u))

2] −
Eπrcmh [(π(u)/πrcmh(u))2] ≥ 0, it is sufficient to show
h(u, v) ≥ 0. Clearly, for u = v, we have h(u, v) = 0. For
u �= v, we have

h(u, v) = π2(u) p(v)p(u) (1− (π(v)p(u))α

(π(u)p(v))α )

+π2(v)p(u)p(v) (1 − (π(u)p(v))α

(π(v)p(u))α )

= π(u)π(v) (π(u)p(v))(π(v)p(u)) [1− (π(v)p(u))α

(π(u)p(v))α ]

+π(u)π(v) (π(v)p(u))(π(u)p(v)) [1− (π(u)p(v))α

(π(v)p(u))α ].

(8)

Let x = (π(u)p(v))/(π(v)p(u)). Then, we have

h(u, v) = π(u)π(v)[x(1 − 1/xα) + (1− xα)/x]
= π(u)π(v)[(x + 1/x)− (x1−α + 1/x1−α)].

Let g(x) = x + 1/x. If x ∈ (0, 1], we have g′(x) =
1−1/x2 ≤ 0, implying that g(x) is monotonically decreasing.
If x ∈ [1,+∞), we have g′(x) ≥ 0, indicating that g(x)
is monotonically increasing. Now, we discuss the following
two cases. If x ∈ (0, 1], then x ≤ x1−α for α ∈ [0, 1].
Since g(x) is monotonically decreasing when x ∈ (0, 1], we
have g(x) ≥ g(x1−α), resulting in [(x + 1/x) − (x1−α +
1/x1−α)] ≥ 0. Likewise, if x ∈ [1,+∞), then x ≥ x1−α

holds. As a consequence, we have g(x) ≥ g(x1−α) and
[(x+1/x)−(x1−α+1/x1−α)] ≥ 0. Since supp(p) = supp(π),
we have x > 0 and π(u)π(v) > 0 for u, v ∈ supp(p). Putting
it all together, we have h(u, v) ≥ 0. This completes the proof.

Note that Theorem 3.2 is very general. It does not require the
explicit formula of πrcmh, and it only needs the knowledge
of πrcmh(v)/πrcmh(u) for any pair u, v ∈ supp(πrcmh) (see
Eq. (6)).

B. RCMH algorithm for graph sampling

Here we show how to use the RCMH algorithm for unbiased
graph sampling. In the case of unbiased graph sampling, the
target distribution is π = πu. A random walk on graph G
forms the initial Markov Chain P , where P (u, v) = 1/du for
all v ∈ N(u) and P (u, v) = 0 for all v /∈ N(u). By Eq. (5), we
can derive that the probability transition matrix of the RCMH
algorithm for unbiased graph sampling is given by

P rcmh
uv =

⎧⎨
⎩

(1/du)min{(du/dv)α, 1}, if v ∈ N(u)
1−∑

u �=w P rcmh
uw , if u = v,

0, otherwise.
(9)

Algorithm 1 details the RCMH algorithm for unbiased graph
sampling. Note that Algorithm 1 is nothing but a special

case of the RCMH algorithm. After obtaining the samples by
Algorithm 1, we are able to derive an asymptotically unbiased
estimator for Eπu(f) based on the IS framework. First, we
calculate the stationary distribution of RCMH algorithm for
unbiased graph sampling. Specifically, based on Theorem 3.1,
we have the following corollary.

Corollary 3.3: The stationary distribution of RCMH algo-
rithm for unbiased graph sampling is given by πrcmh(u) =

d
(1−α)
u /Z for u ∈ V , where Z is a normalization constant.

Proof: The proof is omitted due to space limit.

Equipped with Corollary 3.3, we present an estimator for
the RCMH algorithm as follows:

Eπrcmh(f) =

∑
u∈S f(u)wrcmh(u)∑

u∈S wrcmh(u)
, (10)

where S denotes the set of sampled nodes and wrcmh(u) =

d
(α−1)
u is the important weight of node u. The asymptotical

unbiasedness of the above estimator can be easily derived
by a similar argument presented in [12], [2]. Note that by
Theorem 3.2, we have varπrcmh( πu(u)

πrcmh(u) ) ≤ varπrw( πu(u)
πrw(u) ).

That is to say, Algorithm 1 can mitigate the large deviation
problem of RW by setting an appropriate parameter α. On the
other hand, Algorithm 1 can also alleviate the sample rejection
problem of MH because its sample acceptance ratio is larger
than that of MH given that α ∈ [0, 1). As a result, RCMH can
achieve a tradeoff between the large deviation problem of RW
and the sample rejection problem of MH. Additionally, when
α = 1, Algorithm 1 becomes the MH algorithm, and when
α = 0, Algorithm 1 becomes the RW algorithm. Therefore,
Algorithm 1 creates an interesting connection between MH
and RW, and it also unifies them.

IV. THE GMD ALGORITHM

In this section, we propose a novel generalized maximum-
degree random walk (GMD) algorithm for unbiased graph
sampling. We show that the GMD algorithm can balance the
tradeoff between the large deviation problem of RW and the
repeated samples problem of MD. Below, we first describe
the basic idea of our algorithm. Then, we present the GMD
algorithm and the theoretical analysis as well. Finally, we show
how to use the GMD algorithm for unbiased graph sampling.

The basic idea. As discussed in Section II, MD needs to
add self-loops on the nodes to achieve a uniform stationary
distribution. If the maximum degree (or its upper bound) of
a graph is very large1, MD has to add a large number of
self-loops on the low-degree nodes. As a result, the algorithm
generates a large number of repeated samples. Intuitively, to
mitigate the repeated samples problem of MD algorithm, one
effective solution is to reduce the number of self-loops so that
the walk goes to the neighbor nodes with a high probability.
To achieve this end, our idea is to restrict the number of self-
loops that are added on the low-degree nodes. In particular,
we introduce a controlled parameter C into the original MD
algorithm where C is a nonnegative integer. For any node

1This is indeed the case in the context of unbiased graph sampling via
crawling. Because we do not know the maximum degree in advance, and thus
we has to set a very large constant to ensure that it is larger than the maximum
degree [7].
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u ∈ V , if du < C, our algorithm adds C − du self-loops
on u, otherwise the algorithm does not add self-loops on u.
Reconsider the example shown in Fig. 1. Fig. 1(a) and Fig. 1(c)
depict the original graph and the modified graph produced by
our algorithm given that C = 3. Note that when C = 3,
we only need to add one self-loop each on nodes v1 and v4,
because their degrees are smaller than C. For the nodes v2,
v3 and v5, we do not add self-loops as their degrees are no
smaller than C. Compared to MD, our algorithm only adds
two self-loops while MD has to add six self-loops. Therefore,
the number of repeated samples produced by our algorithm
is expected to be substantially smaller than the number of
repeated samples generated by MD.

Similar to MD [7], the procedure of adding self-loops in
GMD can also be done implicitly and on-the-fly. Specifically,
when the GMD walk (with parameter C) traverses a node u,
the walk picks a neighbor node from N(u) with probability
1/max{du, C}. According to this process, for the node whose
degree is no less than C, the GMD walk equals the traditional
random walk to pick the next node. For the node whose degree
is smaller than C, then with probability 1/C the GMD walk
selects the next node from N(u), and with probability (C −
du)/C stays at u. This is equivalent to the process of adding
C − du self-loops on u and then performing the traditional
random walk on the modified graph to select the next node.

A. GMD algorithm and theoretical analysis

Based on the above idea, the transition probability of the
GMD random walk is defined as

P gmd(u, v) =

{
1/max{du, C}, if v ∈ N(u)
0, otherwise,

(11)

where C is a nonnegative integer. Notice that when C = 0,
P gmd(u, v) = 1/du for v ∈ N(u), and thus the GMD
random walk becomes the traditional random walk. When
C = dmax, P gmd(u, v) = 1/dmax for v ∈ N(u), and
thereby the GMD random walk becomes the maximum-degree
random walk. Let Pmd(u, v) be the transition probability of
the maximum-degree random walk. Then, by our definition,
P gmd(u, v) ≥ Pmd(u, v) for any u, v. This fact indicates that
at any node u ∈ V , the probability of the GMD walk traversing
the self-loops is smaller than the probability of the maximum-
degree walk traversing the self-loops. Below, we prove that
the expected “self-loops-traversed” ratio of the GMD walk is
smaller than that of the maximum-degree walk given that both
the GMD walk and the maximum-degree walk have converged
into their stationary distributions. Before we proceed, we first
derive the stationary distribution of the GMD random walk
denoted by πgmd as follows:

πgmd(u) = max{du, C}/
∑

u∈V
max{du, C}, (12)

for any u ∈ V . Denote by rgmd(u) and by rmd(u) the
probabilities of the GMD walk and the maximum-degree walk
traversing the self-loops in the next step, respectively. By def-
inition, it follows that rgmd(u) = 1 − du/(max{du, C}) and
rmd(u) = 1 − du/dmax. The expected “self-loops-traversed”
ratio of the GMD walk and of the maximum-degree walk
are defined by Eπgmd [rgmd(u)] and Eπmd [rmd(u)] respec-
tively. The following theorem shows that Eπgmd [rgmd(u)] <
Eπmd [rmd(u)], given that C < dmax.

Theorem 4.1: Eπgmd [rgmd(u)] < Eπmd [rmd(u)], given
that C < dmax.

Proof: By our definition and Eq. (12), we have

Eπgmd [rgmd(u)] =
∑
u∈V

πgmd(u)rgmd(u)

= 1− ∑
u∈V

du/
∑
u∈V

max{du, C} < 1− ∑
u∈V

du/
∑
u∈V

dmax

= Eπmd [rmd(u)].

This completes the proof.

Theorem 4.1 implies that if C < dmax, the number of
repeated samples obtained by the GMD algorithm is expected
to be smaller than the number of repeated samples generated
by MD, as the expected “self-loops-traversed” ratio of the
GMD walk is smaller than that of the maximum-degree walk.
The GMD algorithm therefore alleviates the repeated samples
problem of MD algorithm provided that C < dmax. In the
experiments, we shall show that the GMD algorithm decreases
the number of repeated samples compared to MD. Next, we
prove that GMD algorithm is also able to mitigate the large
deviation problem of RW. Specifically, the following theorem
shows that the GMD algorithm reduces the χ-distance between
the target distribution πu and the trial distribution πrw of RW.

Theorem 4.2: varπgmd [ πu(u)
πgmd(u)

] ≤ varπrw [ πu(u)
πrw(u) ]

Proof: First, we have Eπgmd [ πu(u)
πgmd(u)

] =∑
u∈V

πgmd(u) πu(u)
πgmd(u)

= 1, and Eπrw [ πu(u)
πrw(u) ] =

∑
u∈V

πgmd(u) πu(u)
πgmd(u)

= 1. Then, to prove the theorem,

it is sufficient to show that

Eπgmd [(
πu(u)

πgmd(u)
)2] ≤ Eπrw [(

πu(u)

πrw(u)
)2].

In particular, we have

Eπgmd [( πu(u)
πgmd(u) )

2]− Eπrw [( πu(u)
πrw(u) )

2]

=
∑
u∈V

[ (π
u(u))2

πgmd(u)
− (πu(u))2

πrw(u) ] =
1
n2

∑
u∈V

[ 1
πgmd(u)

− 1
πrw(u) ]

= 1
n2

∑
u∈V

[
∑

v∈V πgmd(v)

πgmd(u) −
∑

v∈V πrw(v)

πrw(u) ]

= 1
n2

∑
u∈V

∑
v∈V

[ π
gmd(v)

πgmd(u) − πrw(v)
πrw(u) ].

(13)
By definition and Eq. (12), we have πrw(v)/πrw(u) = dv/du
and πgmd(v)/πgmd(u) = max{dv, C}/max{du, C}. Denote
by g(u, v) = πgmd(v)/πgmd(u)−πrw(v)/πrw(u). Then, for
any pair of nodes u, v ∈ V , we let h(u, v) = g(u, v) +

g(v, u). Based on Eq. (13), to prove Eπgmd [( πu(u)
πgmd(u)

)2] ≤
Eπrw [( πu(u)

πrw(u) )
2], it suffices to prove h(u, v) ≤ 0. First, for

u = v, we have h(u, v) = 0. Second, for u �= v, we
have h(u, v) = max{dv,C}

max{du,C} − dv

du
+ max{du,C}

max{dv,C} − du

dv
. Without

loss of generality, we assume that du ≥ dv. Then, we
consider the following three cases. (1) If du ≥ dv ≥ C,
we have h(u, v) = 0. (2) If du ≥ C ≥ dv , we have
h(u, v) = C

du
− dv

du
+ du

C − du

dv
=

(C−dv)(Cdv−d2
u)

Cdudv
≤ 0. (3)

If C ≥ du ≥ dv, we have h(u, v) = 1 − dv

du
+ 1 − du

dv
≤ 0.

Putting it all together, we conclude that h(u, v) ≤ 0. Thus, the
theorem is established.
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Algorithm 2 GMD algorithm for graph sampling

1: u← initial node;
2: i← 1;
3: while stopping condition does not meet do
4: ξi ← Geometric(du/max{du, C}); Si ← u;
5: Select a node v uniformly at random from N(u);
6: u← v; i← i+ 1;
7: return S and ξ;

B. GMD algorithm for graph sampling

Here we show how to use the GMD algorithm for unbiased
graph sampling. To this end, we first perform a GMD random
walk on a graph to collect nodes. In each step, the GMD
walk collects one node. Note that by this procedure, when the
walk traverses the self-loops, we need to record the repeated
nodes into the sample set. This method, however, is not very
effective because the walk could traverse the self-loops too
many times when it arrives at a low-degree node. Similar to the
optimized MD algorithm presented in [7], [11], we can use a
geometric random variable to model the number of consecutive
self-loops that the GMD walk takes on each node so that
one computation can simulate many steps of the actual walk.
More specifically, when the GMD walk reaches a node u, we
generate a geometric random variable ξ(u) with the success
probability du/max{du, C} to simulate that the walk traverses
the self-loops. After that, the GMD walk picks the next node
from N(u) with probability 1/du. The detailed description
of the GMD algorithm is given in Algorithm 2. Note that in
line 4 of Algorithm 2, ξi is a geometric random variable with
success probability du/max{du, C}. Algorithm 2 outputs the
collected node-set S and the corresponding set of geometric
random variables ξ.

After obtaining S and ξ by Algorithm 2, we can construct
an estimator for Eπu(f) based on the IS framework [12]. In
particular, the estimator in the GMD algorithm is given by

Eπgmd(f) =

∑|S|
i=1 f(Si)ξi/max{dSi , C}∑|S|

i=1 ξi/max{dSi , C}
, (14)

where Si denotes the i-th node collected by Algorithm 2, and
ξi be the corresponding geometric random variable denoting
the multiplicity of the sample Si. One can use a similar
argument presented in [12], [2] to prove that the estimator
Eπgmd(f) is asymptotically unbiased. Notice that when C = 0,
the success probability of the geometric random variable is 1;
thus ξi = 1 for any i = 1, · · · , |S|. In this case, the estimator
Eπgmd(f) becomes the estimator Eπrw(f) (Eq. (2)). When
C = dmax, the estimator becomes the estimator used in the
MD algorithm [7]. Thus, our estimator can be deemed as a
generalized estimator which treats the estimators used in RW
and MD as two special cases.

Discussion. Compared to MD, the GMD algorithm has two
advantages. First, GMD is more flexible and does not require
the knowledge of maximum degree (or guessing an upper
bound). Second, by Theorem 4.1, GMD can alleviate the
repeated samples problem of MD with a cost of increasing
the deviation between the target and trial distributions. In
the experiments, however, we will show that such a cost
is typically very low in many real-world graphs. Compared

with the RW algorithm, our algorithm can mitigate the large
deviation problem (Theorem 4.2) with an expense of increasing
repeated samples. In the experiments, we find that the proposed
algorithm can provide a good tradeoff between the repeated
samples problem of MD and the large deviation problem of
RW by setting an appropriate parameter C. In addition, our
algorithm is very general, treating both the MD and RW as
two special instances. In this sense, the proposed algorithm
establishes an interesting link between RW and MD, and it
also unifies these two algorithms.

V. OPTIMIZED ALGORITHMS

In this section, we present several optimization techniques
to further improve the estimation accuracy of the RCMH
and GMD algorithm. Specifically, we leverage the delayed
acceptance and non-backtracking walk techniques proposed in
[2] to optimize the RCMH and GMD algorithms, respectively.
The resulting optimized algorithms are shown to have a
smaller asymptotic variance than their original counterparts.
In the following, we detail the optimized RCMH and GMD
algorithms respectively.

A. RCMH with delayed acceptance

Here we show how the RCMH algorithm can be integrated
with the delayed acceptance technique [2] to further improve
the estimation accuracy. The delayed acceptance technique
is a powerful technique to improve the performance of the
Metropolis-Hastings algorithms. This technique makes use of
the idea of non-backtracking walk which does not affect the
stationary distribution of the original Metropolis-Hastings al-
gorithm. Moreover, it has shown that it reduces the asymptotic
variance of the original estimator obtained by the Metropolis-
Hastings algorithm. Due to space limit, we only describe
the idea of the delayed acceptance technique and how it is
integrated into our algorithm. Let w and u be the previous
and current states of the random walk of the Metropolis-
Hastings algorithm, respectively. Then, if the next state, say v,
is accepted by Metropolis-Hastings algorithm, then the delayed
acceptance technique needs to consider the following two
scenarios. First, if v is equal to the previous state w, then
the delayed acceptance technique makes the walk stop going
to v (i.e., the acceptance is delayed). Instead, it proposes to go
to another state v′ ∈ U\{v} using another Metropolis-Hastings
algorithm (more details can be found in their original paper
[2]). Second, if v �= w, then the delayed acceptance technique
makes the walk go to v like the traditional Metropolis-Hastings
algorithm.

Likewise, for the RCMH algorithm, we can also use such
powerful delayed acceptance technique. Unlike the tradition-
al Metropolis-Hastings algorithm, our acceptance function is
given in Eq. (4). When a state is accepted, then we apply the
delayed acceptance technique to avoid the walk to backtrack
to the previous state as the traditional Metropolis-Hastings
algorithm with delayed acceptance does. One can make use of
the similar arguments to show that such a modification does
not affect the stationary distribution of the RCMH algorithm.
For convenience, we refer to this modified RCMH algorithm
as the RCMH with delayed acceptance algorithm, and it is
abbreviated by RCMHDA. Thus, after obtaining the samples
by the RCMHDA algorithm, we use the same estimator as
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stated in Eq. (10). Using a similar proof presented in [2], we
can conclude that this estimator cuts the asymptotic variance
of the estimator obtained by the RCMH algorithm.

B. Non-backtracking GMD algorithm

Here we propose a non-backtracking GMD (NGMD) algo-
rithm for unbiased graph sampling which integrates the idea of
non-backtracking random walk [2] into the GMD algorithm.
We show that the NGMD algorithm not only preserves the
same stationary distribution as that of the GMD algorithm, but
it also reduces the asymptotic variance [2], [12] of GMD.

First, let us introduce some important notations and con-
cepts. Denote by Xt ∈ V , for t = 0, 1, · · · , the location of a
random walk on an undirected graph at discrete time t, and by
P (Xt, Xt+1) the transition probability. Then, an augmented
state space of this random walk is defined by

E Δ
= {(u, v)|u, v ∈ V, P (u, v) > 0} ⊆ V × V. (15)

Denote by euv a state (u, v) ∈ E . Note that by this definition,
euv �= evu, and it is not necessary u �= v. For instance, in the
case of GMD random walk, it exists self-loops, i.e., P (u, u) >
0 for some u. Thus, by Eq. (15), it is possible that euu ∈ E for
some u. It is well-known that on the augmented state space
E the random walk still forms a Markov Chain denoted by
{Yt

Δ
= (Xt−1, Xt)} [22], [28], [2]. Let Q(euv, ewz) be the

transition matrix of such a Markov Chain on E . Then, by the
definition of random walk, we have Q(euv, ewz) = 0 when
v �= w. Denote by ϕ the stationary distribution of the Markov
Chain on E , and by π the stationary distribution of the random
walk on the state space V . If ϕ(euv) = π(u)P (u, v) for all
euv ∈ E , then we have∑

u∈V,euv∈E
ϕ(euv) =

∑
u∈V

π(u)P (u, v) = π(v), (16)

where the first equality holds due to P (u, v) = 0 for euv /∈ E
[2]. Next, we can define a new function F : E → R such that
F (euv) = f(v). Then, we have

Eϕ(F ) =
∑

euv∈E
ϕ(euv)F (euv) =

∑
u,v∈V

π(u)P (u, v)f(v)

=
∑

v∈V π(v)f(v) = Eπ(f).
(17)

Let Êϕ(F ) be an unbiased estimator of Eϕ(F ) constructed
from the Markov Chain {Yt} on the augmented state space
E , and Êπ(f) be an unbiased estimator of Eπ(f) obtained
from the random walk {Xt} on the original state space V .
Obviously, by Eq. (17), Êϕ(F ) is also unbiased for Eπ(f).
There are many different constructions of the Markov Chain
{Yt} depending on different transition matrices Q. For some
constructions, the asymptotic variance of the estimator Êϕ(F )
is no larger than that of the estimator Êπ(f) [28], [2]. Note
that Eq. (17) is subject to the condition ϕ(euv) = π(u)P (u, v).
Therefore, an important question is how to construct a Markov
Chain {Yt} such that the asymptotic variance of Êϕ(F ) is no
greater than that of Êπ(f), while simultaneously maintaining
the condition ϕ(euv) = π(u)P (u, v). Neal in [28] proposed
a general method to achieve this goal. Specifically, he proved
the following theorem.

Theorem 5.1: [28] Let {Xt} be an irreducible and re-
versible Markov Chain with transition matrix P and stationary

distribution π. Denote by {Yt
Δ
= (Xt−1, Xt)} a new Markov

Chain defined on the augmented space E with transition matrix
Q. If Q meets the following two conditions:

P (u,w)Q(ewu, euv) = P (u, v)Q(evu, euw), (18)

Q(ewu, euv) ≥ P (u, v), (19)

for all ewu, euw, euv, evu ∈ E with w �= v. Then, the Markov
Chain {Yt} has a unique stationary distribution ϕ where
ϕ(euv) = π(u)P (u, v) holds for any euv ∈ E . Moreover, for
any function f , the asymptotic variance of Êϕ(F ) is no larger
than that of Êπ(f).

Non-backtracking random walk with re-weighting (NRW).
Equipped with Theorem 5.1, the challenge left is how to
construct the transition matrix Q that meets the conditions
shown in Eq. (18) and Eq. (19). In [2], Lee et al. proposed
a non-backtracking random walk algorithm (NRW) for unbi-
ased graph sampling where the transition matrix satisfies the
conditions in Theorem 5.1. The NRW algorithm first performs
a non-backtracking random walk to collect nodes, and then
uses the same estimator as that of the RW algorithm (Eq. (2))
to estimate Eπu(f). Here the non-backtracking random walk
is a variant of the traditional random walk in which the walk
does not backtrack to the previous node. Specifically, for any
u, v ∈ V , let P rw(u, v) = 1/du and Pnrw(u, v) be the transi-
tion probabilities of the traditional random walk and the non-
backtracking random walk, respectively. Here Pnrw(u, v) =
1/(du − 1) if du > 1; otherwise Pnrw(u, v) = 1/du. Note
that Pnrw(u, v) = 1/(du − 1) (not 1/du) for du > 1 implies
that the walk does not backtrack to the previous node where
the walk originates. This non-backtracking random walk can
be interpreted by a Markov Chain defined on the augmented
space E . In particular, let w, u, and v be the previous state, the
current state, and the next state of a traditional random walk on
graph, respectively. Then, for all w �= v and ewu, euv ∈ E , we
can construct a Markov Chain on the augmented space E with
transition probabilities Q(ewu, euv) = 1/(du − 1) for du > 1
and Q(ewu, euv) = 1/du for du = 1. By this construction,
one can show that Q satisfies the conditions in Theorem 5.1
[2]. Clearly, the transition matrix of the non-backtracking
random walk Pnrw is equivalent to Q. By Theorem 5.1
and Eq. (16), the stationary distribution (w.r.t. nodes) of the
non-backtracking random walk is still the same as that of
the traditional random walk. As a result, after obtaining the
sampled nodes by the non-backtracking random walk, we can
use the same estimator as that of the RW algorithm (Eq. (2)).
Notice that by Theorem 5.1, the estimator obtained by the non-
backtracking random walk has a smaller asymptotic variance
than the estimator obtained by the traditional random walk.

The NGMD algorithm. Here we propose a novel non-
backtracking GMD random walk algorithm called NGMD
which applies the non-backtracking random walk technique
to the GMD algorithm. It is important to note that this is non-
trivial because the GMD random walk may traverse self-loops,
while the traditional random walk does not. Hence, the idea
of the NRW algorithm cannot be directly applied in our case.
There are two challenges to devise a non-backtracking GMD
random walk algorithm. The first challenge is how to design
a transition matrix Q for the Markov Chain defined on the
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augmented state space E such that it satisfies the conditions
in Theorem 5.1 given that the original random walk is the
GMD walk. The second challenge is how to devise an efficient
NGMD algorithm using the geometric random variable to
model the number of consecutive self-loops subject to the
constraint of non-backtracking walk. Below, we shall present
a new algorithm to tackle these challenges.

Let w, u, and v be the previous state, the current state, and
the next state of a GMD random walk on a graph, respectively.
Based on the GMD random walk, we construct a Markov
Chain on the augmented space Engmd with transition matrix
Qngmd where Engmd Δ

= {(u, v)|u, v ∈ V, P gmd(u, v) > 0}.
Denote by su the number of self-loops that are added on u
by the GMD algorithm, i.e., su = max{du, C} − du. For any
euv, ewz ∈ Engmd, if v �= w, we define Qngmd(euv, ewz) = 0.
Otherwise, we define the Qngmd as follows.

For any ewu, euv ∈ Engmd, if max{du, C} = 1, we define
Qngmd(ewu, euv) = 1. Unlike NRW, if max{du, C} > 1,
we have to consider two different cases. First, when w = u,
implying that the GMD walk traverses a self-loop u → u, we
define the transition probabilities as

Qngmd(euu, euv) =

{
1/(max{du, C} − 1), if u �= v,
(su − 1)/(max{du, C} − 1), if u = v

(20)
where euu, euv ∈ Engmd. The idea behind the above equation
is as follows. Recall that under the case of w = u, the
GMD walk comes from node w, i.e., the previous state is w.
Therefore, when the GMD walk traverses the neighbor node of
u in the next step (the case u �= v in Eq. (20)), the walk clearly
never backtracks to w. However, when the GMD walk traverses
a self-loop of u in the next step (the case u = v in Eq. (20)),
the walk should avoid to traverse “the same self-loop” where
the walk originates, i.e., w. That is to say, we should “reduce”
one self-loop on u. As a result, the transition probability is
given by (su−1)/(max{du, C}−1). One can easily check that
under the case of w = u, Qngmd(euu, ezv) is a valid transition
probability because

∑
ezv∈Engmd Qngmd(euu, ezv) = 1.

Second, when w �= u, indicating that the GMD walk does
not traverse a self-loop in the current step, we define the
transition probabilities as

Qngmd(ewu, euv) =

{
su/(max{du, C} − 1), if u = v,
1/(max{du, C} − 1), if u �= v ∧ w �= v,
0, otherwise,

(21)
where ewu, euv ∈ Engmd. We describe the idea behind
Eq. (21) as follows. When the GMD walk traverses the self-
loops in the next step (the case u = v in Eq. (21)), the
walk will not backtrack to the previous state w as w �= u.
Therefore, the probability of the walk traversing the self-loops
is su/(max{du, C} − 1) as there are su self-loops. When the
GMD walk traverses the neighbor node of u in the next step
(the case u �= v), the walk should avoid to go to the previous
node w. Thus, the transition probability is 1/(max{du, C}−1)
if w �= v, and otherwise the transition probability is 0. One can
easily show that under the case of w �= u, Qngmd(ewu, ezv)
is a valid transition probability. More importantly, by these
constructions, Qngmd meets the conditions in Theorem 5.1
(Eq. (18) and Eq. (19)) as stated in the following theorem.

Theorem 5.2: Qngmd meets the conditions in Theorem 5.1.
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Fig. 2: Illustration of NGMD walk’s transition probability

Proof: If max{du, C} = 1, by definition, one can
easily verify that the theorem holds. If max{du, C} >
1, we consider the following three different cases. (1)
w = u and u �= v. In this case, by definition,
we have P gmd(u,w) = su/max{du, C}, P gmd(u, v) =
1/max{du, C}, Qngmd(ewu, euv) = 1/(max{du, C} − 1), and
Qngmd(evu, euw) = su/(max{du, C} − 1). Based on this, one
can easily check that the first condition in Theorem 5.1,
i.e., Eq. (18), holds. Also, we have Qngmd(ewu, euv) >
P gmd(u, v). (2) w �= u and u = v. In this case,
we have P gmd(u,w) = 1/max{du, C}, P gmd(u, v) =
su/max{du, C}, Qngmd(ewu, euv) = (su)/(max{du, C} − 1),
and Qngmd(evu, euw) = 1/(max{du, C} − 1). Also, we
can conclude that under this case, P gmd and Qngmd meet
the conditions in Theorem 5.1. (3) w �= u, u �=
v, and w �= v. In this case, by definition, we have
P gmd(u,w) = 1/max{du, C}, P gmd(u, v) = 1/max{du, C},
Qngmd(ewu, euv) = 1/(max{du, C}−1), and Qngmd(evu, euw) =
1/(max{du, C} − 1). Similarly, we can claim that P gmd and
Qngmd satisfy the conditions in Theorem 5.1. It is worth
noting that we do not need to consider the case of w = v
because the conditions in Theorem 5.1 requires w �= v. Putting
it all together, the theorem is established.

Based on Eq. (20) and Eq. (21), for any w, u, v, the
transition probability of the NGMD random walk is defined
by

Pngmd(u, v) = Qngmd(ewu, euv). (22)

Compared to the GMD random walk, the next step of the
NGMD random walk depends on both the current node and
the previous node. Therefore, the NGMD walk has to record
the previous node. It is important to note that in the context of
graph sampling via crawling, the primary cost is the number of
samples that the random walk needs to draw [1], [2]. Hence,
such an additional space overhead in the NGMD walk does
not matter in this context. Fig. 2 illustrates the transition
probability of the NGMD walk. In Fig. 2(a), the NGMD walk
is currently at node u and the previous state is w where w �= u.
According to Eq. (21) and Eq. (22), the walk with probability
0 backtracks to w and with equal probability (1/4 in Fig. 2(a))
goes to the other neighbor nodes and the self-loops. Similarly,
if the previous node w equals u (Fig. 2(b)) which means
that the walk has traversed a self-loop, then the walk with
probability 0 traverses the same self-loop and with the equal
probability (1/3 in Fig. 2(b)) traverses the other self-loops and
the neighbor nodes. Note that by Theorem 5.1, Theorem 5.2,
and Eq. (16), the NGMD random walk achieves the same
stationary distribution as that of the GMD random walk.

Now we turn to overcome the second challenge, i.e., how
to optimize the NGMD algorithm using the geometric random
variable model. Notice that there are two different cases that
the NGMD walk may traverse self-loops consecutively: (1)
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TABLE I: Summary of the datasets

Name # of nodes # of edges TVD dmax

Digg 116,893 14,523,048 0.727 6,957
WikiTalk 2,363,335 8,223,638 0.603 95,354
WebStanford 157,144 681,398 0.394 237
RoadnetCA 1,965,206 5,533,214 0.136 12

w = u (the previous state of the NGMD walk equals the cur-
rent state), and (2) w �= u. A straightforward solution is to use
two geometric random variables to simulate the consecutive
self-loops in these two cases, respectively. Unfortunately, this
is not correct. The reason is because under case (2), if the
NGMD walk traverses a self-loop, then in the next step case
(2) becomes case (1) (because in the next step the previous
state and the current state are the same). Therefore, under case
(2), we cannot use a geometric random variable to simulate the
consecutive self-loops. In fact, we find that we only need to
adopt the geometric random variable model under case (1).
Specifically, when w = u, according to Eq. (20), we generate
a geometric random variable ξ(u) with success probability
du/(max{du, C} − 1) simulating the number of consecutive
self-loops that the NGMD walk takes at u. When w �= u,
we use the transition probability defined in Eq. (21) to select
the next node. If the next node is u (the current state), i.e.,
the NGMD walk traverses the self-loop, then we turn to case
(1). If the next node is not u, then we perform the same
procedure recursively. The detailed algorithm of NGMD is
outlined in Algorithm 3. In Algorithm 3, lines 4-8 and lines 10-
16 implement the NGMD random walk under case (1) and case
(2), respectively. Note that in line 5, ξi denotes the multiplicity
of the sample Si. This quantity equals the geometric random
variable with success probability du/(max{du, C}−1) plus 1
because we need to add the self-loop w → u given that w = u.
Line 20 means that the NGMD walk traverses the self-loop
under case (2). After that, the random walk turns to case (1).
The algorithm returns the sample set S and the vector ξ. After
obtaining S and ξ, we can use the same estimator defined
in Eq. (14) to estimate Eπu(f) as the stationary distribution
of the NGMD walk is equal to that of the GMD walk. By
Theorem 5.1 and Theorem 5.2, we can conclude that the
estimator obtained by the NGMD random walk has smaller
asymptotic variance than the estimator obtained by the GMD
random walk.

Additionally, we remark that in Algorithm 3, if C = 0,
Algorithm 3 becomes the NRW algorithm presented in [2].
This is because if C = 0, the case of w = u (line 4-8
in Algorithm 3) is impossible and the condition in line 11
always holds. If C = dmax, we refer to the Algorithm 3 as
the non-backtracking maximum-degree random walk (NMD)
algorithm. In this sense, similar to the GMD algorithm, the
NGMD algorithm (Algorithm 3) is also very general and treats
NRW and NMD algorithms as two special instances.

VI. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed algorithms
and compare them with the state-of-the-art random walk
based algorithms for graph sampling. All the algorithms are
implemented in C++ and tested on a PC with Windows XP,

Algorithm 3 NGMD algorithm for graph sampling

1: w← previous node, u← current node;
2: i← 1;
3: while stopping condition does not meet do
4: if w = u then
5: ξi ← Geometric(du/(max{du, C} − 1)) + 1;
6: Si ← u;
7: Select a node v uniformly at random from N(u);
8: u← v; i← i+ 1;
9: else

10: Generate a uniform random value p ∈ [0, 1];
11: if p× (max{du, C} − 1) ≤ du − 1 then
12: ξi ← 1; Si ← u;
13: Select a node v uniformly at random from N(u)\{w};
14: w ← u; u← v; i← i+ 1;
15: else
16: w ← u;
17: return S and ξ;

2xDual-Core Intel Xeon 2.66 GHz CPU and 4GB memory.

Datasets. We use four publicly available real-world datasets,
which are Digg, WikiTalk, WebStanford, and RoadnetCA.
(1) Digg is a social network dataset [29], (2) WikiTalk is a
communication network dataset [30], (3) WebStanford is a
web graph dataset [30], and (4) RoadnetCA is a road network
dataset [30]. The detailed information of these datasets are
reported in Table I. Note that the fourth column in Table I
denotes the total variance distance (TVD) [11] between the
stationary distribution of the random walk and the uniform
distribution, i.e., TVD = 1

2

∑
u∈V | du

2m − 1
n |. As can be seen,

the TVD of the first three datasets is large, implying a large
deviation between the stationary distribution of the random
walk and the uniform distribution. For the last dataset, the TVD
is relatively small, as the node degrees in the road network are
not very different from one another.

Evaluation methodology. Following most graph sampling
literature [9], [1], [2], we evaluate different algorithms based
on their estimation accuracies of degree distribution of a graph,
because the degree distribution is a fundamental property of a
graph. In particular, we use a commonly-used metric, the total
variance distance (TVD), to measure the estimation accuracy
of degree distribution. The TVD metric is a standard distance
measure for two probability distributions. The larger TVD
the algorithm achieves, the lower estimation accuracy it gets.
For all the algorithms, we discard the first 5,000 samples
(the so-called burn-in period) to ensure that the random walk
converges to the stationary distribution. A similar process
has been done in previous graph sampling studies [1], [2].
To guarantee the accuracy, we perform 1,000 independent
simulations for all the algorithms. All the data points reported
in the experiments are the average values over the 1,000
simulations. Below, we first compare our algorithms with the
baselines given that parameters α (in RCMH and RCMHDA)
and C (GMD and NGMD) are fixed to 0.1 and 0.5 × dmax

respectively. Then, we present a comprehensive study on how
such parameters affect the performance of our algorithms, and
we also provide an empirically recommendation for setting
such parameters in practice.

Exp-1: Comparison of various random walk samplers.
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Fig. 3: Comparison of basic random walk samplers
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Fig. 4: Comparison of optimized random walk samplers

First, we compare the estimation accuracy of different basic
random walk samplers, which are the RW algorithm [1], the
MH algorithm [10], [1], the MD algorithm [7], the proposed
RCMH algorithm, and the proposed GMD algorithm. The
results with varying sample size are reported in Fig. 3. As
can be seen, the estimation accuracies of the GMD and
RCMH algorithms are comparable, and they are consistently
better than the other algorithms, which confirm the theoretical
analysis presented in Section III and Section IV. As desired,
the estimation accuracy of all the algorithms increase with
increasing sample size. The MH algorithm performs poorly,
which is consistent with the previous observations [4].

Second, we compare the performance of optimized random
walk samplers, including the NRW algorithm [2], the MHDA
algorithm [2], the proposed NMD algorithm, the proposed
RCMHDA algorithm, and the proposed NGMD algorithm.
Fig 4 depicts the results. We can see that the proposed RCMH-
DA and NGMD algorithms consistently outperform the other
competitors over all the datasets. The estimation accuracy of
NGMD is slightly better than that of RCMHDA in all datasets.
These results imply that our algorithms needs a small number
of samples to achieve the same estimation accuracy as the
state-of-the-art NRW algorithm. For example, in WebStanford
dataset (Fig 4(c)), the NRW algorithm requires 1.76 times more
samples on average to achieve the same estimation accuracy
as the NGMD algorithm. In addition, when comparing the
optimized samplers with their basic counterparts, we can see
that the optimized samplers consistently outperform the basic
ones, which confirm the theoretical analysis in Section V.
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Exp-2: Parameter effects and practical recommendation. In
this experiment, we study how the parameters α (in RCMH and
RCMHDA algorithms) and C (in GMD and NGMD algorithm-
s) affect the performance of the proposed algorithms. Here
we use the state-of-the-art NRW algorithm as the baseline,
and set the sample size to 8,000. Similar results can also be
observed with different sample sizes. For convenience, we set
σ = C/dmax, and use σ to control the parameter C in GMD
and NGMD algorithms. Fig. 5 and Fig. 6 show the estimation
accuracy of the proposed algorithms with varying α (∈ [0, 1])
and σ (∈ [0, 1]), respectively. From Fig. 5, we can see that in
all datasets, the estimation accuracy of RCMH and RCMHDA
generally increases as α increases when α ∈ [0, 0.2]. When
α ∈ [0.2, 1], the estimation accuracy of both RCMH and
RCMHDA decrease with increasing α. Another finding is that
if α ≤ 0.3, RCMHDA outperforms NRW. Hence, for practical
recommendation, we suggest to set α to a value in the range
[0, 0.3] depending on different datasets. From Fig. 6, we ob-
serve that over all datasets, the estimation accuracy of NGMD
is significantly better than that of NRW when σ ∈ [0.3, 0.7],
and when σ /∈ [0.3, 0.7] our algorithm is also comparable with
NRW. As a result, for practical recommendation, we suggest
to set σ in the range [0.3, 0.7] depending on different datasets.
Note that in many real-world graphs, σ ∈ [0.3, 0.7] implies a
large range of parameters C that can be selected. For example,
in WebStanford datasets, σ ∈ [0.3, 0.7] indicates C ∈ [71, 165].

Besides the estimation accuracy, we also study how parame-
ters α and C affect the sample acceptance ratios in the RCMH
and RCMHDA algorithms as well as the sample repeated
ratios in the GMD and NGMD algorithms, respectively. Fig. 7

937



0 0.5 1

20
40
60
80

100

σ

S
am

p
le

 r
ep

ea
te

d
 r

at
io (b) Sample repeated ratio vs σ

 

 

0 0.5 1

0.4

0.6

0.8

1

αS
am

p
le

 a
cc

ep
ta

n
ce

 r
at

io (a) Sample acceptance ratio vs α

 

 
RCMH
RCMHDA

GMD
NGMD

Fig. 7: Sample acceptance (repeated) ratio vs α (σ)

reports the results in WebStanford dataset with sample size
8,000. Similar results can also be observed in other datasets
and with various sample size as well. From Fig. 7(a), we can
clearly see that the acceptance ratio monotonically decreases
as α increases. Note that the acceptance ratio of RCMH and
RCMHDA are equivalent. When α = 1, RCMH is downgraded
to MH. This result confirms that the proposed RCMH and
RCMHDA algorithms indeed reduce the rejection ratio of the
MH algorithm. In addition, it is worth mentioning that the
acceptance ratio of MH is only 0.278. This could be the major
reason why MH performs poorly. From Fig. 7(b), we can
observe that the sample repeated ratio increases with increasing
σ (or C). Recall that when σ = 1, the GMD algorithm
becomes the MD algorithm. Hence, compared to MD, our
algorithms cuts the number of repeated samples given that
σ < 1. These results validate the theoretical analysis presented
in Section IV (Theorem 4.1). In addition, the sample repeated
ratio of NGMD is slightly smaller than that of GMD which
further confirms that the non-backtracking walk is better than
the traditional random walk for unbiased graph sampling.

VII. CONCLUSION

In this paper, we first present a detailed analysis of the
drawbacks of previous random walk based graph sampling
algorithms. Then, we propose two novel algorithms, called
rejection-controlled Metropolis-Hastings (RCMH) algorithm
and generalized maximum-degree random walk (GMD) al-
gorithm respectively. We show in theory and experiments
that, both RCMH and GMD can balance the tradeoffs of the
limitations of the previous algorithms by setting appropriate
parameters. To further improve the estimation accuracy, we in-
tegrate the so-called delayed acceptance and non-backtracking
random walk techniques into the RCMH and GMD algorithm,
respectively. We conduct extensive experiments over four real-
world graphs to evaluate the proposed algorithms, and the
results show the effectiveness of the proposed algorithms.
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